The cochlea detects sound and is tonotopically organized
The cochlea is the auditory sense organ within the inner ear that is responsible for hearing. The cochlea is a coiled, fluid-filled tube that is split into three chambers by two membranes, Reissner's membrane and the basilar membrane
Answer:
the horizontal distance covered by the cannonball before it hits the ground is 327.5 m
Explanation:
Given;
height of the cliff, h = 210 m
initial horizontal velocity of the cannonball, Ux = 50 m/s
initial vertical velocity of the cannonball, Uy = 0
The time for the cannonball to reach the ground is calculated as;
The horizontal distance covered by the cannonball before it hits the ground is calculated as;

Therefore, the horizontal distance covered by the cannonball before it hits the ground is 327.5 m
Keremiad<span> is a long literary work, usually in prose, but sometimes in verse, in which the author bitterly laments the state of society and its morals in a serious tone of sustained invective, and always contains a prophecy of society's imminent downfall. </span>
Answer:
Given that
V2/V1= 0.25
And we know that in adiabatic process
TV^န-1= constant
So
T1/T2=( V1 /V2)^ န-1
So = ( 1/0.25)^ 0.66= 2.5
Also PV^န= constant
So P1/P2= (V2/V1)^န
= (1/0.25)^1.66 = 9.98
A. RMS speed is
Vrms= √ 3RT/M
But this is also
Vrms 2/Vrms1= (√T2/T1)
Vrms2=√2.5= 1.6vrms1
B.
Lambda=V/4π√2πr²N
So
Lambda 2/lambda 1= V2/V1 = 0.25
So the mean free path can be inferred to be 0.25 times the first mean free path
C. Using
Eth= 3/2KT
So Eth2/Eth1= T2/T1
So
Eth2= 2.5Eth1
D.
Using CV= 3/2R
Cvf= Cvi
So molar specific heat constant does not change
Answer:
(a) 3.807 s
(b) 145.581 m
Explanation:
Let Δt = t2 - t1 be the time it takes from the moment when the motorcycle starts to accelerate until it catches up with the car. We know that before the acceleration, both vehicles are travelling at a constant speed. So they would maintain a distance of 58 m prior to the acceleration.
The distance traveled by car after Δt (seconds) at
speed is

The distance traveled by the motorcycle after Δt (seconds) at
speed and acceleration of a = 8 m/s2 is


We know that the motorcycle catches up to the car after Δt, so it must have covered the distance that the car travels, plus their initial distance:





(b)

