The correct answer to the question is : A) The velocity of the cart after it hits the wall.
EXPLANATION:
Before answering this question, first we have to understand impulse.
Impulse of a body is defined as the change in momentum or the product of force with time.
Mathematically impulse = m ( v- u ).
Here, v is the final momentum and u is the initial momentum.
Hence, we need the velocity of the cart after it hits the wall in order to calculate the impulse of the lab cart.
Answer:
James is correct here as the force of hand pushing upwards is always more than the force of hand pushing down
Explanation:
Here we know that one hand is pushing up at some distance midway while other hand is balancing the weight by applying a force downwards
so here we can say
Upwards force = downwards Force + weight of snow
while if we find the other force which is acting downwards
then for that force we can say that net torque must be balanced
so here we have

so here we have

so here we can say that upward force by which we push up is always more than the downwards force
Answer:
Mass of the cart = 146 kg
Explanation:
A cart is pulled by a force of 250 N at an angle of 35° above the horizontal.
The cart accelerates at 1.4 m/s² horizontally.
Horizontal force = Fcosθ = 250 cos35° = 204.79N
We have F = ma
Substituting
204.79 = m x 1.4
m = 146.28 kg = 146 kg
Mass of the cart = 146 kg
Decreases, stays the same, increases.
The volume decreases because as air is cooled, the individual molecules collectively possess less kinetic energy and the distances between them decrease, thus leading to a decrease in the volume they occupy at a certain pressure (please note that my answer only holds under constant pressure; air, as a gas, doesn't actually have a definite volume).
The mass stays the same because physical processes do not create or destroy matter. The law of conservation of mass is obeyed. You're only cooling the air, not adding more air molecules.
The density decreases because as the volume decreases and mass stays the same, you have the same mass occupying a smaller volume. Density is mass divided by volume, so as mass is held constant and volume decreases, density increases.
To solve this problem it is necessary to apply the concepts related to the described wavelength through frequency and speed. Mathematically it can be expressed as:

Where,
Wavelength
f = Frequency
v = Velocity
Our values are given as,

Speed of sound
Keep in mind that we do not use the travel speed of the ambulance because we are in front of it. In case it approached or moved away we should use the concepts related to the Doppler effect:
Replacing we have,


Therefore the frequency that you hear if you are standing in from of the ambulance is 0.1214m