Answer: perpendicular to it oscillations.
Explanation: A transverse wave is a wave whose oscillations is perpendicular to the direction of the wave.
By perpendicular, we mean that the wave is oscillating on the vertical axis (y) of a Cartesian plane and the vibration is along the horizontal axis (x) of the plane.
Examples of transverse waves includes wave in a string, water wave and light.
Let us take a wave in a string for example, you tie one end of a string to a fixed point and the other end is free with you holding it.
If you move the rope vertically ( that's up and down) you will notice a kind of wave traveling away from you ( horizontally) to the fixed point.
Since the oscillations is perpendicular to the direction of wave, it is a transverse wave
The current passing through a circuit consisting of a battery of 12 V and resistor of 2 ohms is 6 Ampere
.
Explanation:
- Assume the wires are ideal with zero resistance.
- The current passing through the circuit will be
I = V/R = 12/2 = 6.000 A.
A) We balance the masses: 4(1.00728) vs 4.0015 + 2(0.00055)4.02912 vs. 4.0026This shows a "reduced mass" of 4.02912 - 4.0026 = 0.02652 amu. This is also equivalent to 0.02652/6.02E23 = 4.41E-26 g = 4.41E-29 kg.
b) Using E = mc^2, where c is the speed of light, multiplying 4.41E-29 kg by (3E8 m/s)^2 gives 3.96E-12 J of energy.
c) Since in the original equation, there is only 1 helium atom, we multiply the energy result in b) by 9.21E19 to get 3.65E8 J of energy, or 365 MJ of energy.
The energy stored in a capacitor is
E = (1/2) · (capacitance) · (voltage)²
E = (1/2) · (6 x 10⁻⁶ F) · (12 V)²
E = (3 x 10⁻⁶ F) · (144 V²)
<em>E = 4.32 x 10⁻⁴ Joule</em>
(That's 0.000432 of a Joule)