1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Valentin [98]
3 years ago
15

Which is the larger value 5 * 10^5 or 3* 10^7

Physics
1 answer:
PSYCHO15rus [73]3 years ago
5 0

Explanation:

5x 10^5= 500,000

3x 10^7= 30,000,000

so the second one

You might be interested in
A book rests on a table, exerting a downward force on the table. the reaction to this force is:
lapo4ka [179]
The upward force the table exerts on the ground!
Equal and opposite forces.
4 0
3 years ago
Why do we feel the force of gravity from the Earth but we don’t feel the force of gravity from the moon?
Zigmanuir [339]

Answer:

The gravitational force on the moon is less than on Earth because the strength of gravity is determined by an object's mass. The bigger the object, the bigger the gravitational force. Gravity is pretty much everywhere. We just feel it in different ways depending on our state of motion.

Explanation:

Hope this helped!!

8 0
2 years ago
Read 2 more answers
An idea is being proposed. The steps that lead to the idea are listed below.
gavmur [86]

there were different outcomes each time.

8 0
3 years ago
Read 2 more answers
A projectile is thrown with velocity v at an angle θ with horizontal. When the projectile is at a height equal to half of the ma
raketka [301]

  • Let, the maximum height covered by projectile be \sf{H_m}

\purple{ \longrightarrow  \bf{h_m =  \dfrac{ {v}^{2} \: {sin}^{2} \theta  }{2g} }}

  • Projectile is thrown with a velocity = v
  • Angle of projection = θ

  • Velocity of projectile at a height half of the maximum height covered be \sf{v_0}

\qquad______________________________

Then –

\qquad \pink{  \longrightarrow \bf{ \dfrac{h_m}{2}  = \dfrac{ {v_0}^{2} \: {sin}^{2} \theta  }{2g} }}

\qquad \longrightarrow \sf{ \dfrac{ {v}^{2}  \: {sin}^{2} \theta  }{2g} \times  \dfrac{1}{2}  =  \dfrac{ {v_0}^{2} \: {sin}^{2} \theta  }{2g} }

\qquad\longrightarrow  \sf{ \dfrac{ {v}^{2}  \: {sin}^{2} \theta  }{4g}  =  \dfrac{ {v_0}^{2} \: {sin}^{2} \theta  }{2g} }

\qquad\longrightarrow  \sf{ \dfrac{ {v}^{2}  \: {sin}^{2} \theta  }{2}  =   {v_0}^{2} \: {sin}^{2} \theta }

\qquad\longrightarrow  \sf{ \dfrac{ {v}^{2} }{2}  =   {v_0}^{2} }

\qquad\longrightarrow \bf{v_0 =   \sqrt{ \dfrac{ {v}^{2} }{2} } =  \dfrac{v}{ \sqrt{2} }  }

  • Now, the vertical component of velocity of projectile at the height half of \sf{h_m} will be –

\qquad \longrightarrow   \bf{v_{(y)}=v_0 \: sin \theta }

\qquad \longrightarrow \bf{v_{(y)} = \dfrac{v}{ \sqrt{2} }  \: sin \theta =  \dfrac{v \: sin \: \theta}{ \sqrt{2} }  }

Therefore, the vertical component of velocity of projectile at this height will be–

☀️\qquad\pink {\bf{ \dfrac{v \: sin \:  \theta}{ \sqrt{2} }} }

6 0
2 years ago
Read 2 more answers
Water, which we can treat as ideal and incompressible, flows at 12 m/s in a horizontal pipe with a pressure of 3.0 × 10^4 Pa.
Triss [41]

Answer:

9.8 × 10⁴Pa

Explanation:

Given:

Velocity V₁ = 12m/s

Pressure P₁ = 3 × 10⁴ Pa

From continuity equation we have

                              ρA₁V₁ = ρA₂V₂

                                 A₁V₁ = A₂V₂

making V₂ the subject of the equation;

                               V_{2} = \frac{A_{1}V_{1}}{A_{2}}

the pipe is widened to twice its original radius,

                                r₂ = 2r₁          

then the cross-sectional area A₂ = 4A₁

                           ⇒  V_{2}= \frac{A_{1}V_{1}}{4A_{1}}

                                  V_{2}= \frac{V_{1}}{4}

This implies that the water speed will drop by a factor of  \frac{1}{4} because of the increase the pipe cross-sectional area.  

 The Bernoulli Equation;

     Energy per unit volume before = Energy per unit volume after    

        p₁ + \frac{1}{2}ρV₁²  + ρgh₁ = p₂ + \frac{1}{2}ρV₂²  + ρgh₂  

Total pressure is constant and P_{T} = P = \frac{1}{2}ρV₂²ρV²  

        p₁ + \frac{1}{2}ρV₁²  = p₂ + \frac{1}{2}ρV₂²

Making p₂ the subject of the equation above;

        p₂ = p₁ + \frac{1}{2}ρV₁² - \frac{1}{2}ρV₂²

But V_{2}  = \frac{V_{1}}{4} so,

        p₂ = p₁ + \frac{1}{2}ρV₁² - \frac{1}{2}ρ\frac{V_{1}^{2}}{4^{2}}      

       p₂ = 3.0 x 10⁴ + (\frac{1}{2} × 1000 × 12²) - ( \frac{1}{2} × 1000 × 12²/4² )

      P₂ = 3.0 x 10⁴ + 7.2 × 10⁴ - 4.05 x 10³    

       P₂ = 9.79 × 10⁴Pa      

      P₂ = 9.8 × 10⁴Pa                      

4 0
2 years ago
Other questions:
  • What is cosmic background radiation?
    12·2 answers
  • What statement best describes the kind of change that could have taken place
    8·1 answer
  • The force on an object is F⃗ =−17j⃗ . For the vector v⃗ =2i⃗ +3j⃗ , find: (a) The component of F⃗ parallel to v⃗
    9·1 answer
  • Select all of the following that describes momentum, p [mark all correct answers]
    11·1 answer
  • The height of the Empire State Building is 318.00 meters. If a stone is dropped from the top of the building, what is the stone'
    8·1 answer
  • If you were to choose one, which of Earth's spheres is the most important, and why?
    6·1 answer
  • Movies and TV shows sometimes portray a person being thrown backwards a sizable distance as a result of being struck by a bullet
    8·1 answer
  • PLZ HELP!!!!!!! My favorite playground equipment is the swings. In 1-3 sentences explain a pattern of motion that u predict u'll
    14·1 answer
  • PLEASE HELP 15 POINTS AND BRAINIEST!!!<br> Reporting fake answers
    8·1 answer
  • In order for work to happen you MUST have?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!