Answer: The correct answer is option C: Both events are equally likely to occur
Step-by-step explanation: For the first experiment, Corrine has a six-sided die, which means there is a total of six possible outcomes altogether. In her experiment, Corrine rolls a number greater than three. The number of events that satisfies this condition in her experiment are the numbers four, five and six (that is, 3 events). Hence the probability can be calculated as follows;
P(>3) = Number of required outcomes/Number of possible outcomes
P(>3) = 3/6
P(>3) = 1/2 or 0.5
Therefore the probability of rolling a number greater than three is 0.5 or 50%.
For the second experiment, Pablo notes heads on the first flip of a coin and then tails on the second flip. for a coin there are two outcomes in total, so the probability of the coin landing on a head is equal to the probability of the coin landing on a tail. Hence the probability can be calculated as follows;
P(Head) = Number of required outcomes/Number of all possible outcomes
P(Head) = 1/2
P(Head) = 0.5
Therefore the probability of landing on a head is 0.5 or 50%. (Note that the probability of landing on a tail is equally 0.5 or 50%)
From these results we can conclude that in both experiments , both events are equally likely to occur.
For six you can write 1/4 because there is 4 pennies and 1 represents each penny
for number 5 you can put 2/10 because there is 10 coins and 2 quarters
and for number 7 is that Bradley has 10 coins not 9 so it would be 1/10
Answer:
C. 16x+9=4x
Step-by-step explanation:
number 3 is not congruent but number 4 is because #4 is basically the same thing but you cant really multiply something to question #3 to get those answers.
Answer:
The linear speed in which Darlene is traveling is 24.74 miles per hour.
Step-by-step explanation:
The wheel experiments rolling, which is a combination of translation and rotation. The point where linear speed happens is located at geometrical center of the wheel and instantaneous center of rotation is located at the point of contact between wheel and ground. The linear speed (
), measured in inches per second, is defined by following expression:
(1)
Where:
- Radius of the wheel, measured in inches.
- Angular speed, measured in radians per second.
If we know that
and
, then the linear speed, measured in miles per hour, in which Darlene is traveling is:


The linear speed in which Darlene is traveling is 24.74 miles per hour.