What is the question? I think that you answered it yourself...
Answer:
total distance = 1868.478 m
Explanation:
given data
accelerate = 1.68 m/s²
time = 14.2 s
constant time = 68 s
speed = 3.70 m/s²
to find out
total distance
solution
we know train start at rest so final velocity will be after 14 .2 s is
velocity final = acceleration × time ..............1
final velocity = 1.68 × 14.2
final velocity = 23.856 m/s²
and for stop train we need time that is
final velocity = u + at
23.856 = 0 + 3.70(t)
t = 6.44 s
and
distance = ut + 1/2 × at² ...........2
here u is initial velocity and t is time for 14.2 sec
distance 1 = 0 + 1/2 × 1.68 (14.2)²
distance 1 = 169.37 m
and
distance for 68 sec
distance 2= final velocity × time
distance 2= 23.856 × 68
distance 2 = 1622.208 m
and
distance for 6.44 sec
distance 3 = ut + 1/2 × at²
distance 3 = 23.856(6.44) - 0.5 (3.70) (6.44)²
distance 3 = 76.90 m
so
total distance = distance 1 + distance 2 + distance 3
total distance = 169.37 + 1622.208 + 76.90
total distance = 1868.478 m
When a car is coasting downhill, the kinetic and potential energies are increasing and decreasing respectively.
<h3>What are kinetic and potential energy?</h3>
Kinetic energy is the energy possessed by an object because of its motion, equal to one half the mass of the body times the square of its speed.
Potential energy, on the other hand, is the energy possessed by an object because of its position (in a gravitational or electric field), or its condition (as a stretched or compressed spring, as a chemical reactant, or by having rest mass).
According to this question, a car going downhill will begin to speed because there is lesser friction. This suggests that the kinetic energy increases while the potential energy decreases.
Learn more about potential energy at: brainly.com/question/24284560
#SPJ1
Answer:
Answer for the question is given in the attachment.
Explanation: