Answer:
-255.4 kJ
Explanation:
The free energy of a reversible reaction can be calculated by:
ΔG = (ΔG° + RTlnQ)*n
Where R is the gas constant (8.314x10⁻³ kJ/mol.K), T is the temperature in K, n is the number of moles of the products (n =1), and Q is the reaction quotient, which is calculated based on the multiplication of partial pressures by the partial pressure of the products elevated by their coefficient divide by the multiplication of the partial pressure of the reactants elevated by their coefficients.
C₂H₂(g) + 2H₂(g) ⇄ C₂H₆(g)
Q = pC₂H₆/[pC₂H₂ * (pH₂)²]
Q = 0.261/[8.58*(3.06)²]
Q = 3.2487x10⁻³
ΔG = -241.2 + 8.314x10⁻³x298*ln(3.2487x10⁻³)
ΔG = -255.4 kJ
Answer:
is that a question or statement?
Explanation:
Answer:
Explanation:
1)6
2)0
3)2
4)2
r the no. of atoms present in the molecules
Answer: It is very important to know the activity tendencies of the elements. The activity tendencies tells us about whether the element is reactive or not.
In the redox-reaction where there is a need to know the oxidizing agent and reducing agent, we can know it easily from the activity tendencies. The elements lying above the reactivity series are better reducing agents.
In the substitution reactions, the activity tendencies helps us to know which element will replace the other. The element lying above in the series will replace the element lying below it.

where, N is an element that lies above in the reactivity series
M is an element that lies below in the reactivity series
I believe the answer is observation of the elements