Explanation:
total heat = Heat required to convert 2 kg of ice to 2 kg of water at 0 °C + Heat required to convert 2 kg of water at 0 °C to 2 kg of water at 20 °C.
Heat=mhfg+mCpΔT
Here, m ( mass of ice) = 2 kg
hfg (latent heat of fusion of ice) = 334 KJ
Cp of water (specific heat) = 4.187 KJ/Kg-K
ΔT(Temperature difference) = 20 °C
Therefore, Heat required = 2 x 334 + 2 x 4.187 x (20 - 0 )
Heat reqd= 835.48 KJ
Therefore, to melt 2 kg of ice 835.48 KJ of heat is required.
Answer: The molar mass of H2S is greater than the molar mass of NH3, making the velocity and effusion rate of NH3 particles faster. Effusion rate is inversely proportional to molar mass.
Explanation:
Based on the information I would assume B, 73 degrees...
It shouldn't be A, 4 minutes on the burner should increase the temperature.
If it were D, it would be beyond boiling, and water takes a decent amount of energy to heat, D should be all vapor.
Same logic for C, it's basically almost boiling.
I would say 73 degrees seems most reasonable for 4 minutes.
Answer:
Reagent A: PBr₃
Reagent B: Mg in Et₂O.
Explanation:
Hello,
In this case, your facing a problem in which a carboxylic acid is produced starting by an alcohol. More specifically, cyclopentanol must react with phosphorous tribromide in order to yield bromocyclopentane which is more likely to produce a carboxylic acid, therefore, reagent A is PBr₃.
On the other hand, by means of the production of the specified product, bromocyclopentane must react with carbon dioxide and magnesium in diethyl ether in acidic media to promote the production of the cyclopentanoic acid via the grignard reaction (substitution of the bromine by the carboxyle group), therefore, reagent B is Mg in Et₂O.
Best regards.
Answer:
Cu
Fe
Explanation:
Oxidizing agents:
Oxidizing agents oxidize the other elements and itself gets reduced.
Reducing agents:
Reducing agents reduced the other element are it self gets oxidized.
Oxidation:
Oxidation involve the removal of electrons and oxidation state of atom of an element is increased.
Reduction:
Reduction involve the gain of electron and oxidation number is decreased.
a) Cu²⁺ (aq) + Mg(s) + Cu(s) + Mg²⁺(aq)
Copper is oxidizing agent it accept two electrons from magnesium and oxidize the Mg and itself get reduced.
b) Fe₂O₃(s) + 3CO(g) → 2Fe(l) + 3CO₂(g)
In this reaction iron is oxidizing agent because iron itself reduced from +3 to 0.