Answer:
The reaction begins and builds up heat. This heat causes the aluminum to melt and float on top of the liquid bromine. Wherever the two elements meet, sparks, heat, and light are given off.
Explanation:
Answer:
The isopropanol evaporated while the water did not because the molecules don't stick together as strongly as the molecules in the water do. The water would need more energy transferred in, in order to evaporate.
Explanation:
Answer:
carbon
Explanation:
cabonis not a conductor of heat
Answer:
One extraction: 50%
Two extractions: 75%
Three extractions: 87.5%
Four extractions: 93.75%
Explanation:
The following equation relates the fraction q of the compound left in volume V₁ of phase 1 that is extracted n times with volume V₂.
qⁿ = (V₁/(V₁ + KV₂))ⁿ
We also know that V₂ = 1/2(V₁) and K = 2, so these expressions can be substituted into the above equation:
qⁿ = (V₁/(V₁ + 2(1/2V₁))ⁿ = (V₁/(V₁ + V₁))ⁿ = (V₁/(2V₁))ⁿ = (1/2)ⁿ
When n = 1, q = 1/2, so the fraction removed from phase 1 is also 1/2, or 50%.
When n = 2, q = (1/2)² = 1/4, so the fraction removed from phase 1 is (1 - 1/4) = 3/4 or 75%.
When n = 3, q = (1/2)³ = 1/8, so the fraction removed from phase 1 is (1 - 1/8) = 7/8 or 87.5%.
When n = 4, q = (1/2)⁴ = 1/16, so the fraction removed from phase 1 is (1 - 1/16) = 15/16 or 93.75%.
Answer : The concentration of A after 80 min is, 0.100 M
Explanation :
Half-life = 20 min
First we have to calculate the rate constant, we use the formula :



Expression for rate law for first order kinetics is given by:

where,
k = rate constant = 
t = time passed by the sample = 80 min
a = initial amount of the reactant = 1.6 M
a - x = amount left after decay process = ?
Now put all the given values in above equation, we get


Therefore, the concentration of A after 80 min is, 0.100 M