Answer:
0.862 J/gºC
Explanation:
The following data were obtained from the question:
Mass of metal (Mₘ) = 50 g
Initial temperature of metal (Tₘ) = 100 °C
Mass of water (Mᵥᵥ) = 400 g
Initial temperature of water (Tᵥᵥ) = 20 °C
Equilibrium temperature (Tₑ) = 22 °C
Specific heat capacity of water (Cᵥᵥ) = 4.2 J/gºC
Specific heat capacity of metal (Cₘ) =?
The specific heat capacity of the metal can be obtained as follow:
Heat lost by metal = MₘCₘ(Tₘ – Tₑ)
= 50 × Cₘ × (100 – 22)
= 50 × Cₘ × 78
= 3900 × Cₘ
Heat gained by water = MᵥᵥCᵥᵥ(Tₑ – Tᵥᵥ)
= 400 × 4.2 × (22 – 20)
= 400 × 4.2 × 2
= 3360 J
Heat lost by metal = Heat gained by water
3900 × Cₘ = 3360
Divide both side by 3900
Cₘ = 3360 / 3900
Cₘ = 0.862 J/gºC
Therefore, the specific heat capacity of the metal is 0.862 J/gºC
The missing part of the question is shown in the image attached
Answer:
C10H22(l) + 31/2 O2 (g)-----> 10CO2(g) + 11H2O(l)
V= 70.4L of CO2
Explanation:
Equation of the reaction is:
C10H22(l) + 31/2 O2 (g)-----> 10CO2(g) + 11H2O(l)
Number of moles of decane = mass/ molar mass
Molar mass of decane= 122gmol-1
n= 0.370×10^3g/122gmol-1= 3.0 moles
T= 13°C +273=286K
P= 1atm
R= 0.082 atmLK-1mol-1
From :
PV= nRT
V= nRT/P
V= 3.0×0.082×286/1
V= 70.4L of CO2
Answer: elevation
, The boundaries of a watershed are determined by topography, which is the shape or the physical features of the land's surface. If the highest points of land surrounding a river were connected (like “connect-the-dots”), this line would form the watershed boundary.
Answer:
B
Explanation:
well heterogenous mixtures are not uniformly distributed these meaning whatever components are "mixed" can be seperated easily
a example of this can be
Soil, oil in water, ice in water
while Homogeneous mixture cannot be seen seperated

. Iron is divalent to hydrogen and water.