198 g of Glucose Is the answer.
Besides producing hydrogen ions in water, all Arrhenius acids have a few things in common. They have pH values anywhere from 0 up to 7, they taste and smell sour and they will turn pH paper pink, red, or orange.
<h3>What Arrhenius acids?</h3>
A substance that raises the concentration of H+ ions in an aqueous solution is known as an Arrhenius acid. Traditional Arrhenius acids are highly polarized covalent substances that dissociate in water to form an anion (A-) and the cation H+.
Aqueous Arrhenius acids have distinguishing characteristics that serve as a useful definition of an acid. Acids can turn blue litmus red, produce aqueous solutions with a sour taste, and react with bases and some metals (like calcium) to generate salts. The Latin word acidus/acre, which means "sour," is where the word acid originates.
Although the precise definition solely refers to the solute, the term "acid" is sometimes used to refer to an aqueous solution of an acid that has a pH lower than 8.
To learn more about Arrhenius acids from the given link:
brainly.com/question/22095536
#SPJ4
1 mole of any gas under STP has volume 22.4 L
So 2.50 moles of any gas ( including oxygen)
2.50 mol *(22.4L/1 mol)=56.0 L
Answer:
204.5505 grams
2.5666 moles
Explanation:
For the first question, multiply 3.5 (# of moles) by 58.443 (g/mol for NaCl).
58.443 * 3.5
<em>I'll distribute 3.5 into 58.443.</em>
(3.5 * 50) + (3.5 * 8) + (3.5 * 0.4) + (3.5 * 0.04) + (3.5 * 0.003)
175 + 28 + 1.4 + 0.14 + 0.0105
203 + 1.4 + 0.14 + 0.0105
204.4 + 0.14 + 0.0105
204.54 + 0.0105
204.5505 grams
There are 204.5505 grams in 3.5 moles of NaCl.
For the second question, divide 150 (# of grams) by 58.443 (g/mol for NaCl). I'll convert both into fractions.
150/1 * 1000/58443
150000/58443
2.56660336 moles
2.5666 moles (rounded to 4 places to keep consistency with the first answer) are in 150 grams of NaCl.
The cations has positive charges that are metals while the anions have negative charges that are non-metals. Upon reaction, there is an exchange in charges that are reflected in the subscripts of the atoms. In this case, compound AX2 must have a cation, A belonging to group 2 A with +2 charge and anion, X belonging to Group 7A with -1 charge. Answer is D.