Answer:
The magnitude of the magnetic force on the rod is 0.037 N.
Explanation:
The magnetic force is given by:

Since the charge (q) is:
Where<em> I</em> is the current = 1.40 A, and <em>t</em> the time
And the speed (v):
Where <em>L </em>is the tracks separation = 2.20 cm = 0.022 m
Hence, the magnetic force is:

Where <em>B </em>is the magnetic field = 1.20 T and <em>θ</em> is the angle between the tracks and the magnetic field = 90°

Therefore, the magnitude of the magnetic force on the rod is 0.037 N.
I hope it helps you!
Answer:
0.71 kg
Explanation:
L = length of the steel wire = 3.0 m
d = diameter of steel wire = 0.32 mm = 0.32 x 10⁻³ m
Area of cross-section of the steel wire is given as
A = (0.25) πd²
A = (0.25) (3.14) (0.32 x 10⁻³)²
A = 8.04 x 10⁻⁸ m²
ΔL = change in length of the wire = 1.3 mm = 1.3 x 10⁻³ m
Y = Young's modulus of steel = 20 x 10¹⁰ Nm⁻²
m = mass hanging
F = weight of the mass hanging
Young's modulus of steel is given as


F = 6.968 N
Weight of the hanging mass is given as
F = mg
6.968 = m (9.8)
m = 0.71 kg
Answer:
5.33*10^-3 seconds
Explanation:
c = d/t
c = speed of light constant (3.0*10^5 km/s)
d = distance (1600 km)
t = ?
3.0*10^5 = 1600/t
t = 1600/3.0*10^5
t = 5.33*10^-3 seconds
I hope this helped! :)
Use one of the equations of accelerated motion; V2=V1 + at ...see attached
the resistance that one surface or object encounters when moving over another.
"a lubrication system that reduces friction"
synonyms: abrasion, abrading, rubbing, chafing, grating, rasping, scraping, excoriation, grinding, gnawing, eating away, wearing away/down; More
the action of one surface or object rubbing against another.
"the friction of braking"
Friction is an important force because it is a force that affects motion. This force exerted by the surface of an object when another object moves against it is the result of molecular attractions between the objects' surfaces, and works in the direction opposite to the direction of the motion.