Answer:
12 mins
Explanation:
The distance covered is 5 km, divide this by 25 to get the fraction of an hour it takes. Doing this you get .2, times this by 60 min (1 hour) to get how many mins it takes
Answer:
Newton's 2nd law think soo
Answer:
time taken with speed 23 km/h will be 1.8 hours or 1 hour 48 minutes
Explanation:
Given:
Time is inversely proportional to the speed
mathematically,
t ∝ (1/r)
let the proportionality constant be 'k'
thus,
t = k/r
therefore, for case 1
time = 3 hr
speed = 14 km/hr
3 = k/14
also,
for case 2
let the time be = t
r = 23 km/h
thus,
we have
t = k/23
on dividing equation 2 by 1
we get
or
or
t = 1.8 hr = or 1 hour 48 minutes ( 0.8 hours × 60 minutes/hour = 48 minutes)
Answer:
<em>h = 20 m</em>
Explanation:
<u>Gravitational Potential Energy</u>
Gravitational potential energy (GPE) is the energy stored in an object due to its vertical position or height in a gravitational field.
It can be calculated with the equation:
U=m.g.h
Where m is the mass of the object, h is the height with respect to a fixed reference, and g is the acceleration of gravity or .
The weight of an object of mass m is:
W = m.g
Thus, the GPE is:
U=W.h
Solving for h:
The weight of the owl is W=40 N and its GPE is U=800 J.
h = 20 m
Answer: MR²
is the the moment of inertia of a hoop of radius R and mass M with respect to an axis perpendicular to the hoop and passing through its center
Explanation:
Since in the hoop , all mass elements are situated at the same distance from the centre , the following expression for the moment of inertia can be written as follows.
I = ∫ r² dm
= R²∫ dm
MR²
where M is total mass and R is radius of the hoop .