Por the impulse, use the formula:
I = F * t
Now, we know:
4000 N = 4000 kg*m/s²
Replacing we have:
I = 4000 kg*m/s² * 0,200 s
Resolving:
I = 800 kg.m/s²
The impulse is <u>800 kg.m/s²</u>
The speed obtained by
the pilot is not accurate since it is measuring the rate of travel in the wind,
true velocity is that compared to the ground. Therefore the speed of the wind
is:
v wind = 165 - 145
v wind = 20 km/h<span>
<span>Therefore the wind velocity = 20 km/h against the plane.</span></span>
Answer:
1a.5km
2a. 31536000 seconds
2b.2800000 centimeters
2c.45,000,000 Milligrams
2d.0.0141667 m/s
2e.2.592 x 10^10 km/day
2f .8.23x10^-7m
2g.0.0000085 m3
Explanation:
1a.(25km/5)(1000m/1km)(1h/3600s) =(5km)( 1) (1) =5km
pls mark as brainliest
Answer:
A Pareto chart, named after an Italian economist, combines a bar chart with a line graph. The bar chart is different from a histogram in more than one way. For example, the vertical bars need not touch one another as per a histogram
Explanation:
Answer:
11.962337 × 10^-4 N
Explanation:
Given the following :
Length L = 11.8
Charge = 29nC = 29 × 10^-9 C
Linear charge density λ = 1.4 × 10^-7 C/m
Radius (r) = 2cm = 2/100 = 0.02 m
Using the relation:
E = 2kλ/r ; F =qE
F = 2kλq/L × ∫dr/r
F = 2*k*q*λ/L × (In(0.02 + L) - In(0.02))
2*k*q*λ/L = [2 × (9 * 10^9) * (29 * 10^9) * (1.4 * 10^-7)]/ 0.118] = 6193.2203 × 10^(9 - 9 - 7) = 6193.2203 × 10^-7 = 6.1932203 × 10^-4
In(0.02 + 0.118) - In(0.02) = In(0.138) - In(0.02) = 1.9315214
Hence,
(6.1932203 × 10^-4) × 1.9315214 = 11.962337 × 10^-4 N