Answer:
1000 Hz
Explanation:
<em>The frequency would be 1000 Hz.</em>
The frequency, wavelength, and speed of a wave are related by the equation:
<em>v = fλ ..................(1)</em>
where v = speed of the wave, f = frequency of the wave, and λ = wavelength of the wave.
Making f the subject of the formula:
<em>f = v/λ.........................(2)</em>
Also, speed (v) = distance/time.
From the question, distance = 900 m, time = 3.0 s
Hence, v = 900/3.0 = 300 m/s
Substitute v = 300 and λ = 0.3 into equation (2):
f = 300/0.3 = 1000 Hz
Answer:
The railroad tracks are 13 m above the windshield (12 m without intermediate rounding).
Explanation:
First, let´s calculate the time it took the driver to travel the 27 m to the point of impact.
The equation for the position of the car is:
x = v · t
Where
x = position at time t
v = velocity
t = time
x = v · t
27 m = 17 m/s · t
27 m / 17 m/s = t
t = 1.6 s
Now let´s calculate the distance traveled by the bolt in that time. Let´s place the origin of the frame of reference at the height of the windshield:
The position of the bolt will be:
y = y0 + 1/2 · g · t²
Where
y = height of the bolt at time t
y0 = initial height of the bolt
g = acceleration due to gravity
t = time
Since the origin of the frame of reference is located at the windshield, at time 1.6 s the height of the bolt will be 0 m (impact on the windshield). Then, we can calculate the initial height of the bolt which is the height of the railroad tracks above the windshield:
y = y0 + 1/2 · g · t²
0 = y0 -1/2 · 9.8 m/s² · (1.6 s)²
y0 = 13 m
<h2>Answer:</h2>
<u>Distance covered is 6.9 meters</u>
<h2>Explanation:</h2>
Data given:
Work Done = 345 kJ = 345000 J
Force = 5 x 10 ^ 4 = 50000 N
Distance = ?
Solution:
As we know that
Work Done = Force applied x Distance covered
By arranging the equation we get
Work / Force = Distance covered
By putting the values
345000 / 50000 = 6.9
So distance covered is 6.9 meters
<em>Hope this will help u</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>✌</em><em>✌</em><em>✌</em>