Answer:
Speed of the car 1 =
Speed of the car 2 =
Explanation:
Given:
Mass of the car 1 , M₁ = Twice the mass of car 2(M₂)
mathematically,
M₁ = 2M₂
Kinetic Energy of the car 1 = Half the kinetic energy of the car 2
KE₁ = 0.5 KE₂
Now, the kinetic energy for a body is given as

where,
m = mass of the body
v = velocity of the body
thus,

or

or

or

or

or
.................(1)
also,

or

or

or

or

or

or

or

or

and, from equation (1)

Hence,
Speed of car 1 =
Speed of car 2 =
The 5kg object 5m/s 1 m off the ground
Answer:
option D is the correct option
Must always remain constant
Explanation:
According to their law of conservation of energy :it states that in a closed system,the total mechanical energy is always constant although energy may change from one form to another. e. g from potential energy to kinetic energy
there is a relation between intensity of light beam and the magnitude of electric field.<span>I=(1/2)c<span>ϵo</span>n<span>E2</span>=P/π<span>r2</span></span>
<span><span>E2</span>=2P/c<span>ϵo</span>nπ<span>r2</span></span>
E= magnitude of electric field
n= refractive index of medium
<span><span>μo</span><span>ϵ0</span>=1/<span>c2
</span></span>energy= power*time
= P*(1m/speed of light)<span><span>energy=(P∗1m)/c</span></span>
Yes it can. It may be a bit counterintuitive but if the car is slowing down, even if it's traveling east, its acceleration is toward the west because it's decelerating and slowing down.