Answer:
The acceleration of the both masses is 0.0244 m/s².
Explanation:
Given that,
Mass of one block = 602.0 g
Mass of other block = 717.0 g
Radius = 1.70 cm
Height = 60.6 cm
Time = 7.00 s
Suppose we find the magnitude of the acceleration of the 602.0-g block
We need to calculate the acceleration
Using equation of motion

Where, s = distance
t = time
a = acceleration
Put the value into the formula



Hence, The acceleration of the both masses is 0.0244 m/s².
Answer:
Option C or the third option.
Explanation: Water is a renewable resource there is so much of it and it just keeps circulating through the system it doesn't run out.
Answer:
a) A=0.125 m
b) T = 1.72 s
c) f= 0.58 Hz
Explanation:
a) As we are told that the maximum displacement from the equilibrium position was 0.125 m (from which it was released at zero initial speed), this is the amplitude of the resultant SHM, so, A=0.125 m
b) In order to find the period, we must get the total time needed to complete a full cycle (which means that the block must pass twice through the equilibrium point). We are told that at t=0.860 sec, the block has reached to the other end of the trajectory, and it has passed through the equilibrium point only once.
This means that the period must be exactly the double of this time:
T = 2*0. 860 sec = 1.72 sec.
c) In a SHM, the frequency is defined just as the inverse of the period (like in a uniform circular movement), so we can get the frequency f as follows:
f = 1/T = 1/ 1.72 s= 0.58 Hz
Answer:
It does not impact snacking behavior.
Explanation:
The mean of the study was 18.7 grams, which is only 2.3 grams below the actual average grams of snacks that an adult would consume while at work, after revising this you could say that theres a significant reduction, but then the standard deviation is 9.1 this means that there are still adults that are eating more than 21 gram of snacks, so the test would result inconclusive.
Hi there!
We can use impulse for this situation:
I = Δp = mΔv
Impulse = Force × time, so:
I = 63.9(24) = 1533.6 Ns
Find force by dividing by time:
I/t = 1533.6/1.2 = 1278 N