Answer:
a) 19440 km/h²
b) 10 sec
Explanation:
v₀ = initial velocity of the car = 45 km/h
v = final velocity achieved by the car = 99 km/h
d = distance traveled by the car while accelerating = 0.2 km
a = acceleration of the car
Using the kinematics equation
v² = v₀² + 2 a d
99² = 45² + 2 a (0.2)
a = 19440 km/h²
b)
t = time required to reach the final velocity
Using the kinematics equation
v = v₀ + a t
99 = 45 + (19440) t
t = 0.00278 h
t = 0.00278 x 3600 sec
t = 10 sec
Since the elevator is moving with a constant speed and not accelerating, the tension in the string is simply the normal, routine, everyday boring weight of the object. Since the elevator is moving with a constant speed and not accelerating, the tension in the string is simply the normal, routine, everyday boring weight of the object.
The answer to this is A. this is because, refraction with a light or sound wave changing its direction involve propagation,(in which propagation is the change in direction of a light or sound wave)
10 x 4^2 = 160 / 8..
V = 20m/s...
...x 8 = 100 miles,meters, metric what ever m stands for after 8 seconds.
This is my guess since the problem says 4m/s^2
V= distance/ ST (traveled/used)
Answer:
0.000507 kg/m
Explanation:
L = Length of string
T = Tension
= Mass density of string
E denotes the E string
D denotes the D String
Frequency is given by

So


The mass density of the E string is 0.000507 kg/m