The answer is "False". The force acting on the object is 27 N.
According to Newton's second law, when a force <em>F</em> acts on am object of mass <em>m</em>, it produces an acceleration <em>a</em>. The force is given by the expression,

Thus, if the body has a mass of 9.0 kg and if it has an acceleration of 3 m/s², then, on substituting the values in the equation for force,

Thus, it can be seen that the force acting on the body is 27 N and not 3 N as is mentioned in the statement. Hence the statement is false.
Answer:
1.171
Explanation:
if n₁sinΘ₁=n₂sinΘ₂, then n₂=n₁sinΘ₁ / sinΘ₂;

Answer:
t = 1.05 s
Explanation:
Given,
The distance between your vehicle and car, 100 ft
The constant speed of your vehicle, u = 95 ft/s
Since, the velocity is constant, a =0
If the car stopped suddenly, time left for you to hit the brake, t = ?
Using the second equation of motion,
S = ut + ½ at²
Substituting the given values in the equation
100 = 95 x t
t = 100/95
= 1.05 s
Hence, the time left for you to hit the brakes and stop before rear ending them, t = 1.05 s
Momentum describes an object in motion and is determined by the product of two variables: mass and velocity. Mass -- the weight of an object -- is usually measured in kilograms or grams for momentum problems. Velocity is the measure of distance traveled over time and is normally reported in meters per second. Examining the possible changes in these two variables identifies the different effects momentum can have on an object in motion.