Answer:
The length of the unknown sides of the triangles are as follows:
CD = 10√2
AC = 10√2
BC = 10
AB = 10
ΔACD is a right angle triangle. Therefore, Pythagoras theorem can be used to find the sides of the triangle.
c² = a² + b²
where
c = hypotenuse side = AD = 20
a and b are the other 2 legs
lets use trigonometric ratio to find CD,
cos 45 = adjacent / hypotenuse
cos 45 = CD / 20
CD = 1 / √2 × 20
CD = 20 / √2 = 20√2 / 2 = 10√2
20² - (10√2)² = AC²
400 - 100(2) = AC²
AC² = 200
AC = √200 = 10√2
ΔABC is a right angle triangle too. Therefore,
AB² + BC² = AC²
Using trigonometric ratio,
cos 45 = BC / 10√2
BC = 10√2 × cos 45
BC = 10√2 × 1 / √2
BC = 10√2 / √2 = 10
(10√2)² - 10² = AB²
200 - 100 = AB²
AB² = 100
AB = 10
Step-by-step explanation:
Answer:
1.5241579e+16 is the answer
Answer:
(p^2−6) (1-q(p^2-6))
Step-by-step explanation:
p^2−6−q·(p^2−6)^2
Put parentheses around the P^2-6 at the beginning of the expression
(p^2-6) -q (p^2−6)^2
Factor out (p^2−6)
(p^2−6) (1-q(p^2-6))
This is a really interesting question! One thing that we can notice right off the bat is that each of the circles has the same amount of area swept out of it - namely, the amount swept out by one of the interior angles of the hexagon. Let’s call that interior angle θ. We know that the amount of area swept out in the circle is proportional to the angle swept out - mathematically
θ/360 = a/A
Where “a” is the area swept out by θ, and A is the area of the whole circle, which, given a radius of r, is πr^2. Substituting this in, we have
θ/360 = a/(πr^2)
Solving for “a”:
a = π(r^2)θ/360
So, we have the formula for the area of one of those sectors; all we need to do now is find θ and multiply our result by 6, since we have 6 circles. We can preempt this but just multiplying both sides of the formula by 6:
6a = 6π(r^2)θ/360
Which simplifies to
6a = π(r^2)θ/60
Now, how do we find θ? Let’s look first at the exterior angles of a hexagon. Imagine if you were taking a walk around a hexagon. At each corner, you turn some angle and keep walking. You make 6 turns in all, and in the end, you find yourself right back at the same place you started; you turned 360 degrees in total. On a regular hexagon, you’d turn by the same angle at each corner, which means that each of the six turns is 360/6 = 60 degrees. Since each interior and exterior angle pair up to make 180 degrees (a straight line), we can simply subtract that exterior angle from 180 to find θ, obtaining an angle of 180 - 60 = 120 degrees.
Finally, we substitute θ into our earlier formula to find that
6a = π(r^2)120/60
Or
6a = 2πr^2
So, the area of all six sectors is 2πr^2, or the area of two circles with radii r.
Answer:
0=-8t + 100
8t=100
t=12.5 minutes
Step-by-step explanation:
Hope this helped! Im sorry if it didn't. Here is the link:
brainly.com/question/5881676