1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Maurinko [17]
2 years ago
13

Please help me to prove this. ​

Mathematics
2 answers:
Vanyuwa [196]2 years ago
8 0
<h3><u>Answer</u> :</h3>

For triangle : A + B + C = π

⇒ A + B = π - C

⇒ cot(A + B) = cot(π - C)

⇒ \sf\dfrac{cotA\:cotB-1}{cotB+cotA}=-cotA

⇒ \bf{cotA\:cotB+cotB\:cotC+cotC\:cotA=1}

<u>Now 1st part of the given expression</u>!

⇒ \sf\dfrac{cosA}{sinB\:sinC}

⇒ \sf\dfrac{cos(\pi-(B+C))}{sinB\:sinC}

⇒ \sf\dfrac{-cosB\:cosC+sinB\:sinC}{sinB\:sinC}

⇒ 1 - cotB cotC

<u>Similarly 2nd part</u>!

⇒ 1 - cotA cotB

<u>Similarly 3rd part</u>!

⇒ 1 - cotC cotA

<u>LHS</u> :

\circ\:\sf{3-(cotA\:cotB+cotB\:cotC+cotC\:cotA)}

\circ\:\sf{3-1}

\circ\:\bf{2} = <u>RHS</u>

<h3>Hence Proved!!</h3>
Mandarinka [93]2 years ago
4 0

Answer:  see proof below

<u>Step-by-step explanation:</u>

Given: A + B + C = π                 →  A + B = π - C

                                                 →  B + C = π - A

                                                 →  A + C = π - B

Use the following Double Angle Identity:    sin 2A = 2 sin A · cos A

Use the following Cofunction Identity:    sin A = cos (π/2 - A)

Use the following Sum to Product Identity:

                                                       sin A + sin B = sin [(A + B)/2] · cos [(A - B)/2]

<u>Proof LHS → RHS</u>

\text{LHS:}\qquad  \dfrac{\cos A}{\sin B\cdot \sin C}+\dfrac{\cos B}{\sin C\cdot \sin A}+\dfrac{\cos C}{\sin A\cdot \sin B}\\\\\\.\qquad \quad = \bigg(\dfrac{2\sin A}{2\sin A}\bigg)\dfrac{\cos A}{\sin B\cdot \sin C}+\bigg(\dfrac{2\sin B}{2\sin B}\bigg)\dfrac{\cos B}{\sin C\cdot \sin A}+\bigg(\dfrac{2\sin C}{2\sin C}\bigg)\dfrac{\cos C}{\sin A\cdot \sin B}\\\\\\.\qquad \quad =\dfrac{2\sin A\cdot \cos A+2\sin B\cdot \cos B+2\sin C\cdot \cos C}{2\sin A\cdot \sin B\cdot \sin C}

\text{Double Angle:}\qquad \qquad \dfrac{\sin 2A+\sin 2B+\sin 2C}{2\sin A\cdot \sin B\cdot \sin C}\\\\\\.\qquad \qquad \qquad \qquad =\dfrac{(\sin 2A+\sin 2B)+\sin 2C}{2\sin A\cdot \sin B\cdot \sin C}

\text{Sum to Product:}\qquad \dfrac{2\sin (A+B)\cdot \cos (A-B)+\sin 2C}{2\sin A\cdot \sin B\cdot \sin C}

\text{Given:}\qquad \qquad \qquad \dfrac{2\sin (\pi -C)\cdot \cos (A-B)+\sin 2C}{2\sin A\cdot \sin B\cdot \sin C}\\\\\\.\qquad \qquad \qquad \qquad =\dfrac{2\sin C\cdot \cos (A-B)+\sin 2C}{2\sin A\cdot \sin B\cdot \sin C}

\text{Double Angle:}\qquad \qquad \dfrac{2\sin C\cdot \cos (A-B)+2\sin C\cdot \cos C}{2\sin A\cdot \sin B\cdot \sin C}\\\\\\.\qquad \qquad \qquad \qquad =\dfrac{2\sin C(\cos (A-B)+\cos C)}{2\sin A\cdot \sin B\cdot \sin C}

\text{Sum to Product:}\qquad \dfrac{2\sin C(2\cos (\frac{A-B+C}{2})\cdot \cos (\frac{A-B-C}{2})}{2\sin A\cdot \sin B\cdot \sin C}\\\\\\.\qquad \qquad \qquad \qquad =\dfrac{4\sin C\cdot \cos (\frac{A+C}{2}-\frac{B}{2})\codt \cos (\frac{A}{2}-\frac{B+C}{2})}{2\sin A\cdot \sin B\cdot \sin C}

\text{Given:}\qquad \qquad \dfrac{4\sin C(\frac{\pi-B}{2}-\frac{B}{2})\cdot \cos (\frac{A}{2}-\frac{\pi -A}{2})}{2\sin A\cdot \sin B\cdot \sin C}\\\\\\.\qquad \qquad \qquad =\dfrac{4\sin C(\frac{\pi}{2}-B)\cdot \cos (\frac{\pi}{2}-A)}{2\sin A\cdot \sin B\cdot \sin C}

\text{Cofunction:}\qquad \qquad \dfrac{4\sin C\cdot \sin B\sin A}{2\sin A\cdot \sin B\cdot \sin C}\\\\\\.\qquad \qquad \qquad \qquad =2

LHS = RHS:  2 = 2  \checkmark

You might be interested in
Simplify each algebraic expression by combing like terms 7x^2-5x+10x-8x^2
castortr0y [4]

Answer: -x^2 + 15x

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
Help me plz!
Goryan [66]

Answer:

1,451.61 cm²

Step-by-step explanation:

A = LW

A = 38.1 x 38.1 (since a checkerboard has to be square)

A = 1,451.61

8 0
3 years ago
A box with a square base and no top is to be made from a square piece of carboard by cutting 4 in. squares from each corner and
Lunna [17]

Answer:

C=27inch\ by\ 27inch

Step-by-step explanation:

Squares h=4inch

Volume v=1444in^3

Generally the equation for Volume of box is mathematically given by

 V=l^2h

 1444=l^2*4

 l^2=361

 l=19in

Since

Length of cardboard is

 l_c=19+4+4

 l_c=27in

Therefore

Dimensions of the piece of cardboard is

C=27inch\ by\ 27inch

7 0
2 years ago
What is planning????​
koban [17]

<em><u>Planning is the process of thinking about the activities required to achieve a desired goal.</u></em>

5 0
2 years ago
A recipe for chili calls for 4/5 cup of water. You are making 1/3of the recipe. How much water do you use?
mrs_skeptik [129]
Sense, the recipe would then have to be using as a whole of 4/5 of water, we would then, have to divide 4/5 by 1/3, and by us doing this, we would then get our answer as the following:

\boxed{\boxed{ \frac{4}{5}\div \frac{1}{3}=  5/12}}
6 0
3 years ago
Other questions:
  • What is the solution of the system x − 3y = –13 and 5x + 7y = 34? A. `x = (6)/(5)`, y = 4 B. `x = (7)/(2), y = (9)/(2)` C. `x =
    14·2 answers
  • There are 5,280 feet in one mile. How many feet are there in 6 miles?
    5·1 answer
  • Anna and Jason have summer jobs stuffing envelopes for two different companies. Anna earns $14 for every 400 envelops she finish
    13·1 answer
  • Please help me out with this!!!!!!
    8·2 answers
  • Joe does push-ups, sit-ups, and jumping jacks. He does these in a different order every day. How many different orders are possi
    7·2 answers
  • Log(x)=5/2 what is the answer?
    15·1 answer
  • HELPPP WIL MARK BRANLIEST IF RIGHTTT
    9·2 answers
  • A plumber charges of fee of $75 to make a house call. He also charges $50 per hour for labor.
    8·1 answer
  • HELP ITS AN EMERGENCY HELP HELP FOR 100 POINTS
    13·1 answer
  • A copy machine makes 44 copies per minute . how many copies does it make in 3 minutes and 45 seconds
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!