1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Maurinko [17]
3 years ago
13

Please help me to prove this. ​

Mathematics
2 answers:
Vanyuwa [196]3 years ago
8 0
<h3><u>Answer</u> :</h3>

For triangle : A + B + C = π

⇒ A + B = π - C

⇒ cot(A + B) = cot(π - C)

⇒ \sf\dfrac{cotA\:cotB-1}{cotB+cotA}=-cotA

⇒ \bf{cotA\:cotB+cotB\:cotC+cotC\:cotA=1}

<u>Now 1st part of the given expression</u>!

⇒ \sf\dfrac{cosA}{sinB\:sinC}

⇒ \sf\dfrac{cos(\pi-(B+C))}{sinB\:sinC}

⇒ \sf\dfrac{-cosB\:cosC+sinB\:sinC}{sinB\:sinC}

⇒ 1 - cotB cotC

<u>Similarly 2nd part</u>!

⇒ 1 - cotA cotB

<u>Similarly 3rd part</u>!

⇒ 1 - cotC cotA

<u>LHS</u> :

\circ\:\sf{3-(cotA\:cotB+cotB\:cotC+cotC\:cotA)}

\circ\:\sf{3-1}

\circ\:\bf{2} = <u>RHS</u>

<h3>Hence Proved!!</h3>
Mandarinka [93]3 years ago
4 0

Answer:  see proof below

<u>Step-by-step explanation:</u>

Given: A + B + C = π                 →  A + B = π - C

                                                 →  B + C = π - A

                                                 →  A + C = π - B

Use the following Double Angle Identity:    sin 2A = 2 sin A · cos A

Use the following Cofunction Identity:    sin A = cos (π/2 - A)

Use the following Sum to Product Identity:

                                                       sin A + sin B = sin [(A + B)/2] · cos [(A - B)/2]

<u>Proof LHS → RHS</u>

\text{LHS:}\qquad  \dfrac{\cos A}{\sin B\cdot \sin C}+\dfrac{\cos B}{\sin C\cdot \sin A}+\dfrac{\cos C}{\sin A\cdot \sin B}\\\\\\.\qquad \quad = \bigg(\dfrac{2\sin A}{2\sin A}\bigg)\dfrac{\cos A}{\sin B\cdot \sin C}+\bigg(\dfrac{2\sin B}{2\sin B}\bigg)\dfrac{\cos B}{\sin C\cdot \sin A}+\bigg(\dfrac{2\sin C}{2\sin C}\bigg)\dfrac{\cos C}{\sin A\cdot \sin B}\\\\\\.\qquad \quad =\dfrac{2\sin A\cdot \cos A+2\sin B\cdot \cos B+2\sin C\cdot \cos C}{2\sin A\cdot \sin B\cdot \sin C}

\text{Double Angle:}\qquad \qquad \dfrac{\sin 2A+\sin 2B+\sin 2C}{2\sin A\cdot \sin B\cdot \sin C}\\\\\\.\qquad \qquad \qquad \qquad =\dfrac{(\sin 2A+\sin 2B)+\sin 2C}{2\sin A\cdot \sin B\cdot \sin C}

\text{Sum to Product:}\qquad \dfrac{2\sin (A+B)\cdot \cos (A-B)+\sin 2C}{2\sin A\cdot \sin B\cdot \sin C}

\text{Given:}\qquad \qquad \qquad \dfrac{2\sin (\pi -C)\cdot \cos (A-B)+\sin 2C}{2\sin A\cdot \sin B\cdot \sin C}\\\\\\.\qquad \qquad \qquad \qquad =\dfrac{2\sin C\cdot \cos (A-B)+\sin 2C}{2\sin A\cdot \sin B\cdot \sin C}

\text{Double Angle:}\qquad \qquad \dfrac{2\sin C\cdot \cos (A-B)+2\sin C\cdot \cos C}{2\sin A\cdot \sin B\cdot \sin C}\\\\\\.\qquad \qquad \qquad \qquad =\dfrac{2\sin C(\cos (A-B)+\cos C)}{2\sin A\cdot \sin B\cdot \sin C}

\text{Sum to Product:}\qquad \dfrac{2\sin C(2\cos (\frac{A-B+C}{2})\cdot \cos (\frac{A-B-C}{2})}{2\sin A\cdot \sin B\cdot \sin C}\\\\\\.\qquad \qquad \qquad \qquad =\dfrac{4\sin C\cdot \cos (\frac{A+C}{2}-\frac{B}{2})\codt \cos (\frac{A}{2}-\frac{B+C}{2})}{2\sin A\cdot \sin B\cdot \sin C}

\text{Given:}\qquad \qquad \dfrac{4\sin C(\frac{\pi-B}{2}-\frac{B}{2})\cdot \cos (\frac{A}{2}-\frac{\pi -A}{2})}{2\sin A\cdot \sin B\cdot \sin C}\\\\\\.\qquad \qquad \qquad =\dfrac{4\sin C(\frac{\pi}{2}-B)\cdot \cos (\frac{\pi}{2}-A)}{2\sin A\cdot \sin B\cdot \sin C}

\text{Cofunction:}\qquad \qquad \dfrac{4\sin C\cdot \sin B\sin A}{2\sin A\cdot \sin B\cdot \sin C}\\\\\\.\qquad \qquad \qquad \qquad =2

LHS = RHS:  2 = 2  \checkmark

You might be interested in
A complete table with values for x or y that make this equation true:3x+y=15
Reika [66]

Answer:

Table is attached

Step-by-step explanation:

We are given equation as

3x+y=15

We will complete each column

First column:

we are given x=2 and we have to find y

3\times 2+y=15

6+y=15

y=9

Second column:

we are given y=3 and we have to find x

3x+3=15

3x=12

x=4

Third column:

we are given x=6 and we have to find y

3\times 6+y=15

18+y=12

y=-6

Fourth column:

we are given x=0 and we have to find y

3\times 0+y=15

0+y=15

y=15

Fifth column:

we are given x=3 and we have to find y

3\times 3+y=15

9+y=15

y=6

Sixth column:

we are given y=0 and we have to find x

3x+0=15

3x=15

x=5

Seventh column:

we are given y=8 and we have to find x

3x+8=15

3x=7

x=\frac{7}{3}

now, we can complete table



8 0
3 years ago
When riding a bicycle, wear.<br> O gloves<br> SH<br> O a jacket<br> O a helmet<br> glasses
zavuch27 [327]

Answer:

Most often people wear a helmet when riding a bike.

4 0
3 years ago
Read 2 more answers
SOS HELPPPP
Hunter-Best [27]

Answer:

18

Step-by-step explanation:

5 0
3 years ago
HEWP PWS<br> :c<br> I don’t know da answer x.x
Oksi-84 [34.3K]

Answer:

(I think its C sorry if i get you wrong)

(Hope this helps)

8 0
3 years ago
Read 2 more answers
Kelly has 6 sheets of stickers, with 9 stickers on each sheet. Her aunt gives her 5 more sheets, with 10 stickers on each sheet.
NemiM [27]
104. 54+50. 6 times 9 equals 54. Ten times 5 equals 50.
8 0
4 years ago
Other questions:
  • What is "shift y= 5x 3 units up"
    9·2 answers
  • 9. What is the Greatest Common Factor (GCF) of 9 and 12? *<br> 108<br> о<br> O 36<br> o<br> 9<br> 3
    5·1 answer
  • The cruising speed of the bullet train will be no less than 150 miles per hour.
    11·1 answer
  • More points also what is 2x3+4x6x8+9
    8·2 answers
  • NO LINKS!!!
    13·1 answer
  • HELP HELP !! &amp; PlEASE SHOW WORK ! What would be the compound interest rate if Tom borrowed $6,000 at a 3% interest rate for
    12·1 answer
  • The table represents a linear function.
    7·1 answer
  • A cartoon having 50 oranges weight 7.5 kg how much will thousand oranges weight​
    12·1 answer
  • I need help with this thanks
    14·1 answer
  • What value of w makes the following equation true?<br> w+4 1 over 5 = 13 19 over 20
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!