REACTION TYPE:
Single displacement/Oxidation-reduction
(Hope this helped UwU)
Answer:
yes, animals are a natural resources
Answer: The pH of 0.10 M
is 4.49.
Explanation:
Given: Initial concentration of
= 0.10 M

Let us assume that amount of
dissociates is x. So, ICE table for dissociation of
is as follows.
![Cu(H_{2}O)^{2+}_{6} \rightleftharpoons [Cu(H_{2}O)_{5}(OH)]^{+} + H_{3}O^{+}](https://tex.z-dn.net/?f=Cu%28H_%7B2%7DO%29%5E%7B2%2B%7D_%7B6%7D%20%5Crightleftharpoons%20%5BCu%28H_%7B2%7DO%29_%7B5%7D%28OH%29%5D%5E%7B%2B%7D%20%2B%20H_%7B3%7DO%5E%7B%2B%7D)
Initial: 0.10 M 0 0
Change: -x +x +x
Equilibrium: (0.10 - x) M x x
As the value of
is very small. So, it is assumed that the compound will dissociate very less. Hence, x << 0.10 M.
And, (0.10 - x) will be approximately equal to 0.10 M.
The expression for
value is as follows.
![K_{a} = \frac{[Cu(H_{2}O)^{2+}_{6}][H_{3}O^{+}]}{[Cu(H_{2}O)^{2+}_{6}]}\\1.0 \times 10^{-8} = \frac{x \times x}{0.10}\\x = 3.2 \times 10^{-5}](https://tex.z-dn.net/?f=K_%7Ba%7D%20%3D%20%5Cfrac%7B%5BCu%28H_%7B2%7DO%29%5E%7B2%2B%7D_%7B6%7D%5D%5BH_%7B3%7DO%5E%7B%2B%7D%5D%7D%7B%5BCu%28H_%7B2%7DO%29%5E%7B2%2B%7D_%7B6%7D%5D%7D%5C%5C1.0%20%5Ctimes%2010%5E%7B-8%7D%20%3D%20%5Cfrac%7Bx%20%5Ctimes%20x%7D%7B0.10%7D%5C%5Cx%20%3D%203.2%20%5Ctimes%2010%5E%7B-5%7D)
Hence, ![[H_{3}O^{+}] = 3.2 \times 10^{-5}](https://tex.z-dn.net/?f=%5BH_%7B3%7DO%5E%7B%2B%7D%5D%20%3D%203.2%20%5Ctimes%2010%5E%7B-5%7D)
Formula to calculate pH is as follows.
![pH = -log [H^{+}]](https://tex.z-dn.net/?f=pH%20%3D%20-log%20%5BH%5E%7B%2B%7D%5D)
Substitute the values into above formula as follows.
![pH = -log [H^{+}]\\= - log (3.2 \times 10^{-5})\\= 4.49](https://tex.z-dn.net/?f=pH%20%3D%20-log%20%5BH%5E%7B%2B%7D%5D%5C%5C%3D%20-%20log%20%283.2%20%5Ctimes%2010%5E%7B-5%7D%29%5C%5C%3D%204.49)
Thus, we can conclude that the pH of 0.10 M
is 4.49.
Weeks = 6 x 4 = 24
Mass leak rate of freon = 41.60 g/week
Mass leak rate of fluorine
Fluorine mass in Freon
= —————————————- X leak rate
M.M. Of Freon
19 x 3
——— X 41.60 = 20.010 gm/week
118.5
Total leaked in 6 months
= 24 x 20.010 = 480.24 gm = 0.480 Kg
The correct answer for the question that is being presented above is this one: "2. are equal to the concentrations of the products." Given the reaction: HC2H3O2(aq) + H2O ↔ H3O+(aq) + C2H3O2-(aq) When the reaction reaches a state of equilibrium, the concentration of product is equal yo the reactant.<span> </span>