According to Grahams law the rate of effusion of a gas is inversely proportional to the square root of it's molecular weight. The rate of diffusion is the measure of rate at which two gases mix. From this law we can say that for the two gases carbon monoxide and carbon dioxide, the rate of effusion of carbon monoxide is greater than that of carbon dioxide, this is because carbon monoxide is lighter (28 g) compared to carbon dioxide (44 g).
Answer:
Newton's second law of motion
F = ma
Answer:
18 grams of water
Explanation:
The Balance Chemical Reaction is as follow,
2 NH₄NO₃ → 2 N₂ + O₂ + 4 H₂O
According to Equation,
160 g (2 moles) NH₄NO₃ produces = 72 g (4 moles) of H₂O
So,
40 g of NH₄NO₃ will produce = X g of H₂O
Solving for X,
X = (40 g × 72 g) ÷ 160 g
X = 18 g of H₂O
<em>Hope This Helps!</em>
Answer:
a) The relationship at equivalence is that 1 mole of phosphoric acid will need three moles of sodium hydroxide.
b) 0.0035 mole
c) 0.166 M
Explanation:
Phosphoric acid is tripotic because it has 3 acidic hydrogen atom surrounding it.
The equation of the reaction is expressed as:

1 mole 3 mole
The relationship at equivalence is that 1 mole of phosphoric acid will need three moles of sodium hydroxide.
b) if 10.00 mL of a phosphoric acid solution required the addition of 17.50 mL of a 0.200 M NaOH(aq) to reach the endpoint; Then the molarity of the solution is calculated as follows

10 ml 17.50 ml
(x) M 0.200 M
Molarity = 
= 0.0035 mole
c) What was the molar concentration of phosphoric acid in the original stock solution?
By stoichiometry, converting moles of NaOH to H₃PO₄; we have
= 
= 0.00166 mole of H₃PO₄
Using the molarity equation to determine the molar concentration of phosphoric acid in the original stock solution; we have:
Molar Concentration = 
Molar Concentration = 
Molar Concentration = 0.166 M
∴ the molar concentration of phosphoric acid in the original stock solution = 0.166 M
Answer:
Rain forest
Explanation:
The rainforest has a very diverse animal kingdom