The energy from the light is transferred to the material, causing it to vibrate and absorb the light.
What is energy?
In physics, energy is the quantitative quality that is transmitted to the a body or a physical system, and is discernible in the work performed as well as in the form of light and heat. The law of conservation states that although energy can change its form, it cannot be created or destroyed. Energy is indeed a conserved quantity. The International System of Units' (SI's) joule is the measurement unit for energy (J). A moving object's kinetic energy, a solid object's elastic energy, chemical energy caused by chemical reactions, and the potential energy that an object stores (for instance because of its position inside a field) are examples of common forms of energy.
When light falls upon a material that has a natural frequency equal to the frequency of the light, the light will be absorbed by the material. This is due to resonance, which occurs when the frequency of the light matches the natural frequency of the material. The energy from the light is transferred to the material, causing it to vibrate and absorb the light.
To learn more about energy
brainly.com/question/582060
#SPJ4
Answer:
force-strength,power or energy as an attribute of motion, movement or action. Example: Frictional force.
Answer:
The planet will move from east to west for a couple of months in the night sky.
Explanation:
Retrograde motion is an optical effect due to the fact that Earth rotates more quickly than the planet that apparently has a retrograde motion in the sky.
For example, Saturn has a slower speed in its orbit around the Sun. That means that the Earth will pass it, and that will give the effect that the planet is moving backward. That same scenario can be seen between two cars on a highway, the faster car will see the slower car when it passes as it is moving for a short fragment of time in backward.
Remember that the planets in the night sky move from west to east, in the case of a planet with retrograde motion, it will move from east to west for a couple of months.
The object with the mass ok 1kg will move more quickly because it is lighter than the 100kg object
Potential energy = m · g · h
-- When you held the ball at 2.0 meters above the floor, it had
(0.5 kg) · (9.8 m/s²) · (2.0 m) = 9.8 Joules of potential energy.
-- After it bounced and went back up as high as it could, it was only 1.8 meters above the floor. Its potential energy was
(0.5 kg) · (9.8 m/s²) · (1.8 m) = 8.82 Joules
-- Between the drop and the top of the bounce, it lost
(9.8 - 8.82) = <em>0.98 Joule</em> .
-- The energy was lost when the ball hit the floor. During the hit, 0.98 joule of kinetic energy turned to <em>thermal energy</em>, which slightly heated the ball and the floor.