Answer:
give more details
Step-by-step explanation:
Answer:
125/6(In(x-25)) - 5/6(In(x+5))+C
Step-by-step explanation:
∫x2/x1−20x2−125dx
Should be
∫x²/(x²−20x−125)dx
First of all let's factorize the denominator.
x²−20x−125= x²+5x-25x-125
x²−20x−125= x(x+5) -25(x+5)
x²−20x−125= (x-25)(x+5)
∫x²/(x²−20x−125)dx= ∫x²/((x-25)(x+5))dx
x²/(x²−20x−125) =x²/((x-25)(x+5))
x²/((x-25)(x+5))= a/(x-25) +b/(x+5)
x²/= a(x+5) + b(x-25)
Let x=25
625 = a30
a= 625/30
a= 125/6
Let x= -5
25 = -30b
b= 25/-30
b= -5/6
x²/((x-25)(x+5))= 125/6(x-25) -5/6(x+5)
∫x²/(x²−20x−125)dx
=∫125/6(x-25) -∫5/6(x+5) Dx
= 125/6(In(x-25)) - 5/6(In(x+5))+C
Answer:
option D

Step-by-step explanation:
An expression is undefined when you get division by zero or in simple words when denominator is zero.
Now we will solve each expression one be one by plugging value of x = 0
<h3>1)</h3><h3>

</h3>

-4/-3 = 4/3
<h3>2)</h3><h3>

</h3>

0/-3 = 0
<h3>3)</h3>


6/1
6
<h3>4)</h3>


<h3>-8/0</h3><h3>undefined</h3>
I think it's 23500, 45300, 2500
Answer:
5 im pretty sure
Step-by-step explanation:
if im right, can you mark me brainliest?