Answer:
yes it is a danger.Copper doesn't break down in the environment, leading to its accumulation in plants and animals. Absorption of some copper into the body is essential for human health. Acute industrial exposure to copper fumes, dusts or mists can result in chronic copper poisoning.Copper is a mineral and an element essential to our everyday lives. It is a major industrial metal because of its high ductility, malleability, thermal and electrical conductivity and resistance to corrosion. It is an essential nutrient in our daily diet.
Answer:The substance is Biodegradable
Explanation:
When something is biodegradable it can be broken down by organical processes or decomposers.
Explanation:
First you must calculate the number of moles in this solution, by rearranging the equation. No. Moles (mol) = Molarity (M) x Volume (L) = 0.5 x 2. = 1 mol.
For NaCl, the molar mass is 58.44 g/mol. Now we can use the rearranged equation. Mass (g) = No. Moles (mol) x Molar Mass (g/mol) = 1 x 58.44. = 58.44 g.
Answer:
Iron is the element that is produced at the limit of the reaction.
Explanation:
In nuclear fusion 2 lighter nuclei are combined together into a single nucleus releasing a tremendous amount of energy in the process.
Up to fusion of iron the reaction of fusion is exothermic but when iron atom pops out the reaction becomes endothermic and it requires very high amount of energy to fuse iron atoms which is not available thus marking an end to the fusion reaction.
Answer:
The molarity of urea in this solution is 6.39 M.
Explanation:
Molarity (M) is <em>the number of moles of solute in 1 L of solution</em>; that is
![molarity = moles of solute ÷ liters of solution](https://tex.z-dn.net/?f=molarity%20%3D%20moles%20of%20solute%20%C3%B7%20liters%20of%20solution)
To calculate the molality, we need to know the number of moles of urea and the volume of solution in liters. We assume 100 grams of solution.
Our first step is to calculate the moles of urea in 100 grams of the solution,
using the molar mass a conversion factor. The total moles of 100g of a 37.2 percent by mass solution is
60.06 g/mol ÷ 37.2 g = 0.619 mol
Now we need to calculate the volume of 100 grams of solution, and we use density as a conversion factor.
1.032 g/mL ÷ 100 g = 96.9 mL
This solution contains 0.619 moles of urea in 96.9 mL of solution. To express it in molarity, we need to calculate the moles present in 1000 mL (1 L) of the solution.
0.619 mol/96.9 mL × 1000 mL= 6.39 M
Therefore, the molarity of the solution is 6.39 M.