Answer:
<u>[H2]2[S2][H2S]2Kc=[H2]2[S2][H2S]2</u>
Explanation:
2H2S(g)⇋2H2(g)+S2(g)2H2S(g)⇋2H2(g)+S2(g)
The equilibrium constant expression in terms of concentrations is:
Kc=<u>[H2]2[S2][H2S]2Kc=[H2]2[S2][H2S]2</u><u>.</u>
Answer:
A.
Explanation:
hope this helped sorry if its wrong!
The total Pressure equals the sum of all pressures contained
<span>Since total pressure and the pressure of nitrogen and oxygen is given, finding the pressure of carbon dioxide is given by: </span>
<span>Pressure of Carbon dioxide = 42.9- 6.6- 23.0 </span>
<span>=13.3kPa </span>
I believe the correct answer is the second option. The type of decay that characterizes the change of nuclides to their respective daughter products would be exponential decay. This type of decay is characterized by the decrease of quantity of a material according to the equation y=ab^x.
Answer;
The above statement is true
upon heating a copper sample will expand, leading to a lower density
Explanation;
-The density of solids decreased with increase in temperature and vice versa. The increase in temperature causes the volume of the solid to increase which as a result decreases the density as Density=Mass/Volume. The temperature of a body is the average kinetic energy of the molecules present in it.
In other words; The temperature of a body is the average kinetic energy of the molecules present in it. Therefore; when heat is supplied ( or temperature is increased) the average kinetic energy increases which increases the volume and thus density decreases.