Electrons are both gained and lost.
Answer:
A = -213.09°C
B = 15014.85 °C
C = -268.37°C
Explanation:
Given data:
Initial volume of gas = 5.00 L
Initial temperature = 0°C (273 K)
Final volume = 1100 mL, 280 L, 87.5 mL
Final temperature = ?
Solution:
Formula:
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Conversion of mL into L.
Final volume = 1100 mL/1000 = 1.1 L
Final volume = 87.5 mL/1000 = 0.0875 L
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
T₂ = V₂T₁ / V₁
T₂ = 1.1 L × 273 K / 5.00 L
T₂ = 300.3 L.K / 5.00 K
T₂ = 60.06 K
60.06 K - 273 = -213.09°C
2)
V₁/T₁ = V₂/T₂
T₂ = V₂T₁ / V₁
T₂ = 280 L × 273 K / 5.00 L
T₂ = 76440 L.K / 5.00 K
T₂ = 15288 K
15288 K - 273 = 15014.85 °C
3)
V₁/T₁ = V₂/T₂
T₂ = V₂T₁ / V₁
T₂ = 0.0875 L × 273 K / 5.00 L
T₂ = 23.8875 L.K / 5.00 K
T₂ = 4.78 K
4.78 K - 273 = -268.37°C
From the equation above the reacting ratio of KClO3 to O2 is 2:3 therefore the number of moles of oxygen produced is ( 4 x3)/2 = 6 moles since four moles of KClO3 was consumed
mass=relative formula mass x number of moles
That is 32g/mol x 6 moles =192grams
Answer:
31.9 °C
Explanation:
The formula for the heat q absorbed by an object is
q = mCΔT where ΔT = (T₂ - T₁)
Data:
q = 12.35 cal
m = 19.75 g
C = 0.125 cal°C⁻¹g⁻¹
T₂ = 37.0 °C
Calculations
(a) Calculate ΔT
q = mCΔT
12.35 cal = 19.25 g × 0.125 cal°C⁻¹g⁻¹ × ΔT
12.35 = 2.406ΔT °C⁻¹
ΔT = 12.35/(2.406 °C⁻¹) = 5.13 °C
(b) Calculate T₂
ΔT = T₂ - T₁
T₁ = T₂ - ΔT = 37.0 °C - 5.13 °C = 31.9 °C
The original temperature was 31.9 °C.
Answer:
Diminish reliance on foreign sources of oil
Explanation: