Answer is: both reactions
are exothermic.
<span>
In exothermic reactions, heat is released and enthalpy of reaction is less than
zero (as it show second chemical reaction).
According to Le Chatelier's principle when the reaction
is exothermic heat is included as a product (as it show first
chemical reaction).</span>
Answer:
3.50 molal
Explanation:
Molality → Moles of solute / kg of solvent.
Let's convert the solvent's mass from g to kg
16.2 g . 1kg / 1000 g = 0.0162 kg
Let's determine the moles from the solute
2.61 g . 1 mol / 46 g = 0.0567 moles
Molality → 0.0567 mol / 0.0162 kg = 3.50 m
Your reaction
.. Fe + O2 ---> FexOy
for this reaction..
.. the Fe on the left is in the 0 oxidation state
.. the Fe on the right is in the +(2y/x) oxidation state
.. the O on the left is in the 0 oxidation state
.. the O on the right is in the -2 oxidation state
meaning
.. the O is reduced... . . (it's reduced in oxidation state)
.. the Fe is oxidized.. . .(oxidation state increased)
this is a REDOX reaction
*********
AND.. it's also a synthesis reaction.. (aka combination reaction)
Answer:
55.9 g KCl.
Explanation:
Hello there!
In this case, according to the definition of molality for the 0.500-molar solution, we need to divide the moles of solute (potassium chloride) over the kilograms of solvent as shown below:

Thus, solving for the moles of solute, we obtain:

Since the density of water is 1 kg/L, we obtain the following moles:

Next, since the molar mass of KCl is 74.5513 g/mol, the mass would be:

Regards!
Answer:
<h2>10 m/s²</h2>
Explanation:
The acceleration of an object given it's mass and the force acting on it can be found by using the formula

f is the force
m is the mass
From the question we have

We have the final answer as
<h3>10 m/s²</h3>
Hope this helps you