They both have seven electrons in their outer shell.
If I did this correctly the balanced equation would be:
14H⁺+Cr₂O₇²⁻+6I⁻→3I₂+2Cr³⁺+7H₂O
oxidation half: (iodide was oxidized)
2I⁻→I₂+2e⁻
reduction half: (chromium was reduced)
14H⁺+Cr₂O₇²⁻+6e⁻→2Cr³⁺+7H₂O
H⁺ comes from the solution. It is in the final reaction since in redox reactions the oxygen is turned into water since it can't just go away. I multiplied the oxidation half reaction by 3 in order for both half reactions to half the same number of electrons since equal numbers of electrons need to be lost and gained for the reaction to be balanced.
I hope this helps. Let me know if anything is unclear.
Answer:
The jewelry is 2896.54_Kg/m^3 less dense than pure silver
Explanation:
Density of jewellery = (mass of jewellery) ÷ (volume of jewellery)
=3.25g ÷ 0.428mL = 0.00325Kg÷0.000000428m^3 = 7583.46Kg/m^3
The density of silver is 10490_Kg/m^3 which is (10490 - 7583.46) 2896.54_Kg/m^3 more dense than the jewellery
The density of Silver [Ag]
The weight of Silver per cubic centimeter is 10.49 grams or the weight of silver per cubic meter is 10490 kilograms, that is the density of silver is 10490 kg/m³; at 20°C (68°F or 293.15K) at a pressure of one atmospheres.
Sharing of electrons always means its a covalent bond, and unequal means it is polar, so it is a polar covalent bond