I believe your answer is B.
Answer:
67.4 % of C₉H₈O₄
Explanation:
To make titrations problems we know, that in the endpoint:
mmoles of acid = mmoles of base
mmoles = M . volume so:
mmoles of acid = 20.52 mL . 0.1121 M
mmoles of acid = mg of acid / PM (mg /mmoles)
Let's determine the PM of aspirin:
12.017 g/m . 9 + 1.00078 g/m . 8 + 15.9994 g/m . 4 = 180.1568 mg/mmol
mass (mg) = (20.52 mL . 0.1121 M) . 180.1568 mg/mmol
mass (mg) = 414.4 mg
We convert the mass to g → 414.4 mg . 1g / 1000mg = 0.4144 g
We determine the % → (0.4144 g / 0.615 g) . 100 = 67.4 %
Answer:
The mass fraction of ferric oxide in the original sample :
Explanation:
Mass of the mixture = 3.110 g
Mass of 
Mass of 
After heating the mixture it allowed to react with hydrogen gas in which all the ferric oxide reacted to form metallic iron and water vapors where as aluminum oxide did not react.

Mass of mixture left after all the ferric oxide has reacted = 2.387 g
Mass of mixture left after all the ferric oxide has reacted = y

The mass fraction of ferric oxide in the original sample :

Answer:
The solubility of the mineral compound X in the water sample is 0.0189 g/mL.
Explanation:
Step 1: Given data
The volume of water sample = 46.0 mL.
The weight of the mineral compound X after evaporation, drying, and washing = 0.87 g.
Step 2: Calculate the solubility of X in water
46.00 mL of water sample contains 0.87 g of the mineral compound X.
To calulate how many grams of the mineral compound 1.0 mL of water sample contains:
0.87 g/46.0 mL = 0.0189 g.
This means the solubility of the mineral compound X in the water sample is 0.0189 g/mL.
Answer:
1s*2 2s*2 2p*6
Explanation:
atomic number of neon is 10 so the s-shell contains 2 electron and p-shell contains 6