Answer:
5.56 × 10⁻⁸
Explanation:
Step 1: Given data
- Concentration of the weak acid (Ca): 0.187 M
Step 2: Calculate the concentration of H⁺
We will use the following expression.
pH = -log [H⁺]
[H⁺] = antilog -pH = antilog -3.99 = 1.02 × 10⁻⁴ M
Step 3: Calculate the acid dissociation constant (Ka)
We will use the following expression.
![Ka = \frac{[H^{+}]^{2} }{Ca} = \frac{(1.02 \times 10^{-4})^{2} }{0.187} = 5.56 \times 10^{-8}](https://tex.z-dn.net/?f=Ka%20%3D%20%5Cfrac%7B%5BH%5E%7B%2B%7D%5D%5E%7B2%7D%20%7D%7BCa%7D%20%3D%20%5Cfrac%7B%281.02%20%5Ctimes%2010%5E%7B-4%7D%29%5E%7B2%7D%20%7D%7B0.187%7D%20%3D%205.56%20%5Ctimes%2010%5E%7B-8%7D)
Answer:
The volume of blood plasma in adults is 3.1 L. it's density is 1.03 g/cm3.
Explanation:
<span>The transferred electron from lithium to fluorine provides each atom with a full outer energy level.</span>
Answer:
If a saturated hot solution is allowed to cool, the solute is no longer soluble in the solvent and forms crystals of pure compound. Impurities are excluded from the growing crystals and the pure solid crystals can be separated from the dissolved impurities by filtration.