Answer:

Step-by-step explanation:
Hope this work helps
Answer:
Step-by-step explanation:
Hello!
The variable of interest is:
X: number of daily text messages a high school girl sends.
This variable has a population standard deviation of 20 text messages.
A sample of 50 high school girls is taken.
The is no information about the variable distribution, but since the sample is large enough, n ≥ 30, you can apply the Central Limit Theorem and approximate the distribution of the sample mean to normal:
X[bar]≈N(μ;δ²/n)
This way you can use an approximation of the standard normal to calculate the asked probabilities of the sample mean of daily text messages of high school girls:
Z=(X[bar]-μ)/(δ/√n)≈ N(0;1)
a.
P(X[bar]<95) = P(Z<(95-100)/(20/√50))= P(Z<-1.77)= 0.03836
b.
P(95≤X[bar]≤105)= P(X[bar]≤105)-P(X[bar]≤95)
P(Z≤(105-100)/(20/√50))-P(Z≤(95-100)/(20/√50))= P(Z≤1.77)-P(Z≤-1.77)= 0.96164-0.03836= 0.92328
I hope you have a SUPER day!
$250 c+ $ 180 g > $ 950
<u>Step-by-step explanation:</u>
As a cryptographer (c), Miyoko earns per day = $ 250
As a geologist (g) , Miyoko earns per day = $ 180
So the equation comes to be $250 c+ $ 180 g = $ 950
The equation can be rewritten to find c as, (950-180 g) / 250
The equation can be rewritten to find g as, (950 - 250 c) / 180
Plugin different values of c and g in the above 2 equations, we can find that ,
To achieve the goal, Miyoko requires to be a geologist for 3 days and crpytographist for 2 days.
Answer:
24 cubes
Step-by-step explanation:
You can figure this a couple of ways.
I usually find it easiest to figure in terms of the number of cubes each dimension represents. The vertical dimension (3/2 cm) is the length of 3 cubes; the front-back dimension (2 cm) is the length of 4 cubes, and the width (1 cm) is the length of 2 cubes.
The total number of cubes required is the product of the dimensions in cube-lengths: 3×4×2 = 24 cubes.
__
Another way to figure this is to compute the prism volume in the given dimensions (cm³) and the cube volume in the same dimensions, then find the number of cube volumes in the prism volume.
Prism volume = l×w×h = (2 cm)(1 cm)(3/2 cm) = 3 cm³
Cube volume = (1/2 cm)³ = 1/8 cm³
Then the number of cubes that will fit in the prism is ...
(3 cm³)/(1/8 cm³) = 3×8 = 24 . . . . cubes