Answer:
8.55 × 10²⁴ Ions
Explanation:
Ammonium Chloride is an ionic compound which contains a monatomic anion (Cl⁻ ; Chloride) and a polyatomic cation (NH₄⁺ ; Ammonium).
Hence, when added in water Ammonium Chloride ionizes as;
NH₄Cl → NH₄⁺ + Cl⁻
Hence, we can say that it produces two ions when dissolved in water.
Also,
We know that 1 mole of any substance contains exactly 6.022 × 10²³ particles which is also called as Avogadro's Number. So in order to calculate the number of ions contained by 7.1 moles of NH₄Cl, we will use following relation to first calculate the number of molecules as;
Moles = Number of Molecules ÷ 6.022 × 10²³ Molecules.mol⁻¹
Solving for Number of Molecules,
Number of Molecules = Moles × 6.022 × 10²³ Molecules.mol⁻¹
Putting values,
Number of Molecules = 7.1 mol × 6.022 × 10²³
Number of Molecules = 4.27 × 10²⁴ Molecules
So,
As,
1 Molecule of NH₄Cl contained = 2 Ions
So,
4.27 × 10²⁴ Molecules of NH₄Cl will contain = X ions
Solving for X,
X = 2 Ions × 4.27 × 10²⁴ Molecules / 1 Molecule
X = 8.55 × 10²⁴ Ions
Neutron, neutral subatomic particle that is a constituent of every atomic nucleus except ordinary hydrogen. It has no electric charge and a rest mass equal to 1.67493 × 10−27 kg—marginally greater than that of the proton but nearly 1,839 times greater than that of the electron.
<u>Answer:</u> Increasing temperature
<u>Explanation:</u>
The Principle of Le Chatelier states that <u>if a system in equilibrium is subjected to a change of conditions, it will move to a new position in order to counteract the effect that disturbed it and recover the state of equilibrium.
</u>
The variation of one or several of the following factors can alter the equilibrium condition in a chemical reaction:
- Temperature
- The pressure
- The volume
- The concentration of reactants or products
In the case of the reaction in the question, <u>the change that moves the balance to the left will be the one that moves it towards the reagents</u>, that is, that favors the production of reagents instead of products.
-
Decreasing the concentration of SO3 and increasing the concentration of SO2 <u>will favor the production of SO3</u>, which is the product of the reaction.
- Decreasing the volume increases the pressure of the system and the balance will move to where there is less number of moles. In the case of the reaction in question, we have 3 moles of molecules in the reactants (1 mole of O2 + 2 moles of SO2) while in the products there are 2 moles of SO3 only, therefore, <u>decreasing the volume will displace the balance to the right</u>, which corresponds to the sense in which there is less number of moles.
The reaction of the question is an exothermic since ΔH <0, therefore in the reaction heat is produced and it can be written in the following way,
2SO2(g) + O2(g) ⇌ 2SO3(g) + heat
- So, if we increase the temperature we will be adding heat to the system, so the balance would move to the left to compensate for the excess heat in the system.
Answer:
I believe the answer is "b". "During the experiment, the scientist has only one element, or variable, that is changed to test the hypothesis."
Explanation:
I remember from last year but I'm not totally sure. Good luck!