Answer:
Explanation:
A carbon-12 atom has a mass defect of 0.09564 amu. What is its nuclear binding energy? Round to 3 significant figures. x 10 J per carbon-12 atom
First use the formula;
1 amu =934 MeV
therefore 0.09564 will have
934 x 934
= 89.3 MeV
Answer:
Answer is option C
Explanation:
If you like my answer than please mark me brainliest thanks
Answer:
The words that have some thing match them together and that’s your answer!
Explanation:
Please give me brainleist. :)
Answer:
2a. If the temperature is increased, the reaction will shift to the right in an attempt to release some of the heat. As the forward reaction loses heat while the reverse would create more heat.
2b. If the pressure is increased, it would shift to the left to counteract the increase in pressure as the left side will have fewer molecules.
2c. If Cl2 is added the reaction will shift to the left in order to remove the stress of the extra Cl2 and favor the production of more reactant.
2d. If PCl3 is removed, the reaction will shift to the right. When part of the equation is removed the reaction learns to adapt to the loss by trying to make more Pcl3 and counteract the effects of losing the PCl3.
3a. The reaction will shift to the right to produce more heat and counter the negative effects of losing the heat.
3b. It will shift to the left to get rid of the excess HCl being produced and form more reactant from the breakdown of the HCl.
3c. It would shift to the right in order to get rid of the excess form products from it.
3d. If pressure is decreased there will be no effect on the shift of the reaction because there is an even amount of moles of gas on each side.
4a. K=[N2O4(g0] / [NO2(g)]2
4b. (Below)
K=[N2O4(g)] / [NO2(g)]2
0.4 / 0.5(2)
0.4/0.25 = 1.6
Keq= 1.6