Answer:
250 sq ft
Step-by-step explanation:
Since the shorter side is along the street and the setback is 10ft from each side, the house is 50 ft wide
and 100 -20 -30 = 50 ft long
50 x 50 = 250 sq ft
Answer: the temperature of 76.1 degrees Fahrenheit converted to degrees Celsius
Step-by-step explanation:
Answer:
If it’s asking what it is before the tax, it’s just $25.20. With the tax, it’s $26.46
Step-by-step explanation:
Answer:
5x^2+22x-12 x cannot be -5, -4, -2
(x+5)(x+4)(x+2)
Step-by-step explanation:
In order to solve this, your denominator must be the same. Let's start by writing out the two different quadratic formulas:
x^2 + 6x + 8 <-- This should factor out to (x+4)(x+2)
x^2 + 7x + 10 <-- This should factor out to (x+5)(x+2)
Now that you have factored out the two quadratics, plug them into the equation.
5x - 3
(x+4)(x+2) (x+5)(x+2)
Now as we know, -2 cannot be x because it will turn the entire equation undefined. Multiple top and bottom with (x+5) on the right side and (x+4) on the left side.
5x (x+5) - 3(x+4)
(x+5)(x+4)(x+2) (x+5)(x+4)(x+2)
Focus on the top. 5x(x+5) will turn out to be 5x^2+25x. 3(x+4) will turn out to be 3x+12. Combine the two equations because now they are equal to each other and do the subtraction:
5x^2+25x - (3x+12) = 5x^2+22x-12 x cannot be -5, -4, -2
(x+5)(x+4)(x+2) (x+5)(x+4)(x+2)
Step 1) Draw a dashed line through the points (0,6) and (4,7). These two points are on the line y = (1/4)x+6. To find those points, you plug in x = 0 to get y = 6. Similarly, plug in x = 4 to get y = 7. The dashed line indicates that none of the points on this line are part of the solution set.
Step 2) Draw a dashed line through (0,-1) and (1,1). These two points are on the line y = 2x-1. They are found in a similar fashion as done in step 1.
Step 3) Shade the region that is above both dashed lines. We shade above because of the "greater than" sign. This is shown in the attached image I am providing below. The red shaded region represents all of the possible points that are the solution set. Once again, any point on the dashed line is not in the solution set.