Answer:
Q = 7272 Kilojoules.
Explanation:
<u>Given the following data;</u>
Mass = 2.0*101kg = 202kg
Initial temperature, T1 = 10°C
Final temperature, T2 = 90°C
We know that the specific heat capacity of iron = 450J/kg°C
*To find the quantity of heat*
Heat capacity is given by the formula;
Where;
- Q represents the heat capacity or quantity of heat.
- m represents the mass of an object.
- c represents the specific heat capacity of water.
- dt represents the change in temperature.
dt = T2 - T1
dt = 90 - 10
dt = 80°C
Substituting the values into the equation, we have;
Q = 7272KJ or 7272000 Joules.
Answer: 20.4m
Explanation:
Mass = 0.145kg
Initial velocity, Vi =20m/s
Initial kinetic energy K =1/2mv^2
Initial potential energy Ui = mgx = 0joules
: From conservation of energy,
Uf + Kf = Ui + Ki ( where f represent (final) )
Thus
mgXf + 0 = 0+1/2 mv^2
Xf = Vi^2/ 2g
= (20m/s) ^2/ 2(9.81m/s)^2
=20.4m
Answer:
The induced emf between two end is
V
Explanation:
Given:
Length of rod
m
Height
m
Magnetic field
T
For finding induced emf,

Where
velocity of rod,
For finding the velocity of rod.
From kinematics equation,

Where
initial velocity, 



Put the velocity in above equation,

V
Therefore, the induced emf between two end is
V
Answer:
V = 2.8 m/s
Explanation:
It is given that,
Mass of falcon, 
Mass of dove, 
Initial velocity of falcon, 
Initial velocity of dove, 
When the falcon catches the dove, the momentum remains conserved. Using the formula for the conservation of momentum as :

V is the velocity after impact


V = 2.8 m/s
So, their velocity after the impact is 2.8 m/s. Hence, this is the required solution.