Answer:
According to <em>Newton's first law of motion:</em>
<u>An object in motion tends to remain in motion unless an external force acts upon it.</u>
<u>It stays in motion with the same speed and goes in the same direction.</u>
<u></u>
<em>Hope this helped </em>
<em>:)</em>
Answer:
A) Increases by a factor of 2
Explanation:
Kinetic energy can be defined as an energy possessed by an object or body due to its motion.
Mathematically, kinetic energy is given by the formula;

Where;
K.E represents kinetic energy measured in Joules.
M represents mass measured in kilograms.
V represents velocity measured in metres per seconds square.
Given that mass, m = 2m
Substituting into the equation, we have;
K.E = ½mv²
K.E = ½*2mv²
Cross-multiplying, we have;
2K.E = 2mv²
Hence, if the mass of an object increases by a factor 2, kinetic energy is increased by a factor of 2.
Answer:
Number value and direction
Explanation:
Vectors are quantities that can be identified by value and direction . Examples are velocity and acceleration
Answer:
Second Trial satisfy principle of conservation of momentum
Explanation:
Given mass of ball A and ball B 
Let mass of ball
and
Final velocity of ball 
Final velocity of ball 
initial velocity of ball 
Initial velocity of ball 
Momentum after collision 
Momentum before collision 
Conservation of momentum in a closed system states that, moment before collision should be equal to moment after collision.
Now, 
Plugging each trial in this equation we get,
First Trial

momentum before collision
moment after collision
Second Trial

moment before collision
moment after collision
Third Trial

momentum before collision
moment after collision
Fourth Trial

momentum before collision
moment after collision
We can see only Trial- 2 shows the conservation of momentum in a closed system.
Answer:
0.29D
Explanation:
Given that
F = G M m / r2
F = GM(6m) / (D-r)2
G Mm/r2 = GM(6m) / (D-r)2
1/r2 = 6 / (D-r)2
r = D / (Ö6 + 1)
r = 0.29 D
See diagram in attached file