Answer:
2. You must be able to precisely measure variations in the star's brightness with time.
5. As seen from Earth, the planet's orbit must be seen nearly edge–on (in the plane of our line-of-sight).
6. You must repeatedly obtain spectra of the star that the planet orbits.
Explanation:
The transit method is a very important and effective tool for discovering new exoplanets (the planets orbiting other stars out of the solar system). In this method the stars are observed for a long duration. When the exoplanet will cross in front of theses stars as seen from Earth, the brightness of the star will dip. To observe this dip following conditions must be met:
1. The orbit of the planet should be co-planar with the plane of our line of sight. Then only its transition can be observed.
2. The brightness of the star must be observed precisely as the period of transit can be less than a second as seen from Earth. Also the dip in brightness depends on the size of the planet. If the planet is not that big the intensity dip will be very less.
3. The spectrum of the star needs to be studied and observe during the transit and normally to find out the details about the planets.
4. Also, the orbital period should be less than the period of observation for the transit to occur at least once.
Explanation:
If a body does not cover a equal distance at a equal interval of time it is said to be non uniform motion...

It is gravity¿ what is the question?
Answer:
865.08 m
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 243 m/s
Height (h) of the cliff = 62 m
Horizontal distance (s) =?
Next, we shall determine the time taken for the cannon to get to the ground. This can be obtained as follow:
Height (h) of the cliff = 62 m
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =?
h = ½gt²
62 = ½ × 9.8 × t²
62 = 4.9 × t²
Divide both side by 4.9
t² = 62/4.9
Take the square root of both side.
t = √(62/4.9)
t = 3.56 s
Finally, we shall determine the horizontal distance travelled by the cannon ball as shown below:
Initial velocity (u) = 243 m/s
Time (t) = 3.56 s
Horizontal distance (s) =?
s = ut
s = 243 × 3.56 s
s = 865.08 m
Thus, the cannon ball will impact the ground 865.08 m from the base of the cliff.