Given that the function of the wave is f(x) = cos(π•t/2), we have;
a. The graph of the function is attached
b. 4 units of time
c. Even
d. 4.935 J/kg
e. 1.234 W/kg
<h3>How can the factors of the wave be found?</h3>
a. Please find attached the graph of the signal created with GeoGebra
b. The period of the signal, T = 2•π/(π/2) = <u>4</u>
c. The signal is <u>even</u>, given that it is symmetrical about the y-axis
d. The energy of the signal is given by the formula;

Which gives;
E = 0.5 × 1.571² × 1² × 4 = <u>4.935 J/kg</u>
e. The power of the wave is given by the formula;
E = 0.5 × 1.571² × 1² × 4 × 0.25 = <u>1.234 W/</u><u>kg</u>
Learn more about waves here:
brainly.com/question/14015797
Q= mcΔT
Where Q is heat or energy
M is mass, c is heat capacitance and t is temperature
You have to convert Celsius into kelvin in order to use this formula I believe
Celsius + 273 = Kelvin
21 + 273 = 294K
363 + 273 = 636K
Now...
Q= (0.003)(0.129)(636-294)
Q= 0.132 J if you are using kilograms, in terms of grams which seems more appropriate the answer would be 132J of energy.
Answer:
a) 0.05s
b) 4000N
Explanation:
a)When car is stopped its final velocity become zero
U- 10 m/s
V- 0 m/s
S - 0.25 m
t -?
S = (v+u)*t/2
0.25 =(10+0)*t/2
t = 0.05s
b) If we happened to calculate the avarage force we have to consider about acceleration
V= 0
U = 10
t = 0.05 s
a =?
V = U + at
0 = 10 -a * 0.05
a = 200 m/s2
F = m *a
= 20 * 200
= 4000N
force times gravity (FG) =mass times gravity (mg)