Answer:
<em>v = 381 m/s</em>
Explanation:
<u>Linear Speed</u>
The linear speed of the bullet is calculated by the formula:

Where:
x = Distance traveled
t = Time needed to travel x
We are given the distance the bullet travels x=61 cm = 0.61 m. We need to determine the time the bullet took to make the holes between the two disks.
The formula for the angular speed of a rotating object is:

Where θ is the angular displacement and t is the time. Solving for t:

The angular displacement is θ=14°. Converting to radians:

The angular speed is w=1436 rev/min. Converting to rad/s:

Thus the time is:

t = 0.0016 s
Thus the speed of the bullet is:

v = 381 m/s
Answer:
we know that current = charge/time
Explanation:
therefore,
A = 8000/120
A => 66.666.... amperes
Answer:
196000 N
Explanation:
The following data were obtained from the question:
Height (h) = 10 m
Area (A) = 2 m²
Force (F) =.?
Next, we shall determine the pressure in the tank.
This can be obtained as follow:
P = dgh
Where
P is the pressure.
d is the density of the liquid.
g is acceleration due to gravity
h is the height.
Height (h) = 10 m
Density (d) of water = 1000 kg/m³
Acceleration due to gravity (g) = 9.8 m/s²
Pressure (P) =...?
P = dgh
P = 1000 × 9.8 × 10
P = 98000 N/m²
Therefore, the pressure acting on the tank is 98000 N/m²
Finally, we shall determine the force of gravity acting on the column of water as follow:
Area (A) = 2 m²
Pressure (P) = 98000 N/m²
Force (F) =.?
Pressure (P) = Force (F) /Area (A)
P = F /A
98000 = F/ 2
Cross multiply
F = 98000 × 2
F = 196000 N
Therefore, the force of gravity acting on the column of water is 196000 N
Answer:
Solution given:
No of waves[N] =20crests & 20 troughs
=20waves
Time[T]=4seconds
distance[d]=3cm=0.03m
Now
<u>Wave</u><u> </u><u>length</u><u>=</u>3cm=3 × 
<u>Frequency</u>=
=
=5Hertz
and
Wave speed:wave length×frequency=3 ×
×5=1.5 ×
.
Answer:
The downwards acceleration is 3.53 m/s2.
Explanation:
Let the true weight is m g.
The reading of the balance, R = 0.64 mg
Let the acceleration is a.
As the apparent weight is less than the true weight so the elevator goes down wards with some acceleration.
Use Newton's second law
m g - R = m a
m g - 0.64 m g = m a
0.36 g = a
a = 3.53 m/s2