Answer:
b. 0.25cm
Explanation:
You can solve this question by using the formula for the position of the fringes:

m: order of the fringes
lambda: wavelength 500nm
D: distance to the screen 5 m
d: separation of the slits 1mm=1*10^{-3}m
With the formula you can calculate the separation of two adjacent slits:

hence, the aswer is 0.25cm
I believe it would be 4.4
Answer:
e. Only(a) and (b) above are correct
Explanation:
Impulse
= Fx t = m ( v-u )
v-u = change in velocity
F x t = mass x change in velocity
change in velocity = F t / mass
=a t
change in velocity ∝ t ( time ) , if a is constant
dv = a_avg dt
∫dv = a_avg ∫dt
v-u = a_avg t
change in velocity ∝ t ( time )
So both (a) and (b) are correct.
Answer:
Explanation:
The speed of the water in the large section of the pipe is not stated
so i will assume 36m/s
(if its not the said speed, input the figure of your speed and you get it right)
Continuity equation is applicable for ideal, incompressible liquids
Q the flux of water that is Av with A the cross section area and v the velocity,
so,


the diameter decreases 86% so


Thus, speed in smaller section is 48.6 m/s
I think it is d if not then im sorry