Your heart rate is higher than normal.
Answer:
t_{out} =
t_{in}, t_{out} = 
Explanation:
This in a relative velocity exercise in one dimension,
let's start with the swimmer going downstream
its speed is

The subscripts are s for the swimmer, r for the river and g for the Earth
with the velocity constant we can use the relations of uniform motion
= D / 
D = v_{sg1} t_{out}
now let's analyze when the swimmer turns around and returns to the starting point

= D / 
D = v_{sg 2} t_{in}
with the distance is the same we can equalize

t_{out} = t_{in}
t_{out} =
t_{in}
This must be the answer since the return time is known. If you want to delete this time
t_{in}= D / 
we substitute
t_{out} = \frac{v_s - v_r}{v_s+v_r} ()
t_{out} = 
Answer
D. 0.25 meters/second2
Explanation
The average acceleration is the ratio of change in velocity to the change in time of travel.Taking in this case that the change of velocity is a unit, then Average acceleration is given by;
Aacc=Vf-Vi/Tf-Ti
where Vf=final velocity,Vi=initial velocity' Tf=final time, Ti=initial time
Vf-Vi=1m/s
Tf-Ti=4-0=4seconds
Avacc=1/4=0.25m/s2
Explanation:
The answer is:
A squirrel runs up the trunk of a tree.
Answer:
4 times the mass of Earth
Explanation:
= Mass of Earth
= Mass of the other planet
r = Radius of Earth
2r = Radius of the other planet
m = Mass of object
The force of gravity on an object on Earth is

The force of gravity on an object on the other planet is

As the forces are equal

So, the other planet would have 4 times the mass of Earth