Again I think you did not give the right constants. So I would use the correct constants for mass of moon and distance from earth to moon.
<span>The formula for force of attraction between any two bodies in the universe
F = GMm / r^2. (Newton's Universal law of Gravitation).
G = Universal gravitational constant, G = 6.67 * 10 ^ -11 Nm^2 / kg^2.
M = Mass of Earth. = 5.97 x 10^24 kg.
m = mass of moon = 7.34 x 10^22 kg.
r = distance apart, between centers = in this case it is the distance from Earth to the Moon
= 3.8 x 10^8 m.
(Sorry I could not assume with the values you gave, they are wrong, and if we use them we would be insulting Physics).
So F = ((6.67 * 10 ^ -11)*(5.97 x 10^24)*(7.34 * 10^22)) / (3.8 x 10^8)^2.
Punch it all up in your calculator.
I used a Casio 991 calculator, it should be one of the best in the world.Really lovely calculator, that has helped me a lot in computations like this. I am thankful for the Calculator.
F = 2.0240 * 10^ 20 N.
So that's our answer.
Hurray!!</span>
1. Volume of the solution (B)
2. Celery (D)
3. Hydroxide ions in solution (A)
I’m pretty sure the answer would be D, sorry if it’s not correct!
The ball should put 200 N of force towards the golfer.
Newton's Third Law is every action has an equal and opposite reaction.
It's the ball exerting 200 N of force towards the club as well, but the opposite reaction is that it flies away.
Answer:
(B) at the middle of the pipe
Explanation:
In the case of an open pipe which vibrates in fundamental mode, an anti-node is formed at the middle of the pipe, here the amplitude of the wave is maximum. Hence, the pressure variation is also maximum at the middle.