From a to b speed is 600+40 = 640
from b to a speed is 600-40 = 560
let t be the number of hours of flight. This would mean it would have traveled a distance of 640 miles and the distance yet to travel is 2400-640t
Time left will be (2400-640t)/640. But if they were to return to a it would fly 640t miles at 560mph which will take (640t/560) hrs
(2400-640t) / 640 = 640t / 560
560(2400 - 640t) = 640t x 640
t = 1.75hrs
<h2>
Answer:</h2>
<h3>Interconversion of matter refers to change of one State to another. it is a process by which matter changes from one State to another and back to original state, without any change in it's chemical composition. Solid can be converted into liquids by heating</h3>
<h2>
Explanation:</h2>
<h2>HOPE IT HELPS!!</h2>
<h2>PLZ I NEED BRAINLIEST!!!</h2>
Explanation:
Formula to calculate angular acceleration is as follows.

or, 
Putting the given values into the above formula as follows.

=
= 0.326 
Thus, we can conclude that the wheel’s angular acceleration if its initial angular speed is 2.5 rad/s is 0.326
.
On question 30, that is a displacement- time graph (DT). On this type of graph the gradient is equal to the velocity. B has the steepest gradient, then A and finally C
Now velocity is a vector quantity so it has a direction and speed ( speed doesn't have a fixed direction.)
on the DT graph im going to assume that movement B is a positive velocity with A and C being negative.
So by ranking these: A is the most negative, C is the least negative and B has to be the greatest as it is the only positive velocity.
Q31, The same type of graph is present, by looking at the gradients we can rank the largest and smallest velocities- speeds in the case of the question.
i'll skip my working out as its the same as before:
C, B, A and then D
the same idea as on Q30 applies to Q31 part b,
D,C,B then A