1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sophie [7]
3 years ago
7

Parallel rays of monochromatic light with wavelength 571nm illuminate two identical slits and produce an interference pattern on

a screen that is 75.0cm from the slits. The centers of the slits are 0.640 mm apart and the width of each slit is 0.434 mm.
If the intensity at the center of the central maximum is 5.0010?4W/m2 , what is the intensity at a point on the screen that is 0.830mm from the center of the central maximum?
Physics
1 answer:
Natasha2012 [34]3 years ago
6 0

Answer:

8.8\times 10^{-6} W/m^2

Explanation:

We are given that

Wavelength,\lambda=571 nm=571\times 10^{-9} m

1 nm=10^{-9} m

R=75 cm=\frac{75}{100}=0.75 m

1 m=100 cm

d=0.640 mm=0.64\times 10^{-3} m

1 mm=10^{-3} m

a=0.434 mm=0.434\times 10^{-3} m

y=0.830 mm=0.830\times 10^{-3} m

I_0=5.00\times 10^{-4}W/m^2

tan\theta=\frac{y}{R}

\theta=\frac{0.830\times 10^{-3}}{0.75\times 10^{-2}}

\theta=1.1\times 10^{-3}rad

tan\theta\approx \theta

Because \theta is small.

\phi=\frac{2\pi dsin\theta}{\lambda}

\sin\theta\approx \theta,

Therefore

\phi=\frac{2\times\pi\times 0.64\times 10^{-3}\times 1.1\times 10^{-3}}{571\times 10^{-9}}

\phi=7.74 rad

\beta=\frac{2\pi a\theta}{\lambda}

\beta=5.3 rad

I=I_0cos^2(\frac{\phi}{2})(\frac{sin\frac{\beta}{2}}{\frac{\beta}{2}})^2

I=5\times 10^{-4}cos^2(\frac{7.74}{2})(\frac{sin\frac{5.3}{2}}{\frac{5.3}{2}})^2

I=8.8\times 10^{-6} W/m^2

You might be interested in
What is Motion ????? ​
Mama L [17]

Answer:

\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}

\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}\red{\rule{40pt}{999999pt}}

5 0
3 years ago
Read 2 more answers
Four importance of soil water
Andru [333]

Answer:

nitrogen, phosphorus, potassium, and calcium

Explanation:

Just put it.

4 0
2 years ago
A 12-kg dog jumps up in the air to catch a ball. The dog's center of mass is normally 0.20 m above the ground, and he is 0.50 m
ad-work [718]

Explanation:

Given Data:

mass of dog = 12 Kg

dog's center of mass = 0.20m

length of dog = 0.50m

height of dog's jump = ?

Solution:

Work done of gravitational force = Gain in Potential energy

2.1 × mgΔh = mg (h - 0.1)

2.1 × (0.3 - 0.1) = (h - 0.1)

h = 0.52 m

5 0
3 years ago
Solve for work when
BlackZzzverrR [31]

So, <u>the value of the work is approximately 84.65 J</u>.

<h2>Introduction</h2>

Hi ! Here I will help you to discuss the subject about work that caused by force in amount value of angle. Work is affected by the force and displacement.

  • If related to the magnitude of the force, the amount of work will be proportional to the magnitude of the applied force. Thats mean, if the value of the force that applied on it is greater, then the value of the work will be greater.
  • If related to the magnitude of shift, the amount of work will be proportional to the magnitude of shift of object. Thats mean, if the value of the shift on it is greater, then the value of the work will be greater.
<h3>Formula Used</h3>

The work done by a moving object can be expressed in the equation:

If the Angle Is Ignored

\boxed{\sf{\bold{W = F \times s}}}

If the Angle Effect on Work

\boxed{\sf{\bold{W = F \times s \times \cos(\theta)}}}

With the following condition:

  • W = work that done by object (J)
  • F = force that applied (N)
  • s = shift or distance (m)
  • \sf{\theta} = angle of elevation (°)

<h3>Solution</h3>

We know that :

  • F = force that applied = \sf{1.41 \times 10^4} N
  • s = shift or distance = 84.9 m
  • \sf{\theta} = angle of elevation = 45°

What was asked ?

  • W = work that done by object = ... J

Step by step :

\sf{W = F \times s \times \cos(\theta)}

\sf{W = (1.41 \cdot 10^4) \times 84.9 \times \cos(45^o)}

\sf{W = (1.41 \cdot 10^4) \times 84.9 \times \frac{\sqrt{2}}{2}}

\sf{W = 119.709 \times \frac{\sqrt{2}}{2}}

\sf{W = 59.8545 \sqrt{2}}

\boxed{\sf{W \approx 84.65 \: J}}

<h3>Conclusion</h3>

So, the value of the work is approximately 84.65 J.

3 0
1 year ago
It is known that the 10 kg pipe will roll up the ramp and not slide on the ramp when P becomes sufficiently large. Using the rol
riadik2000 [5.3K]

Answer:

65.73N

Explanation:

The frictional force is a force that opposes the motion of an object on a flat surface or an inclined surface.

It is always acting up an incline plane .

Since the pipe will tend to roll up the plane, then both the impending force P also known as frictional force and the moving force Fm both will be acting up the plane.

The net force acting up the plane is

Fnet = P + Fm... (1)

The force perpendicular to the plane known as the normal reaction R must be equal to the force acting along the ramp in other to keep the body in equilibrium i.e R = Fnet

If R = W = mgcos (theta)

and Fm = mgsin(theta)

Then mgcos theta = Fnet

mgcos (theta) = P+Fm

mgcos (theta) = P+mgsin(theta)

P = mgcos (theta) - mgsin(theta)... (2)

Given mass = 10kg

g = 9.81m/s

We can get theta from the formula;

µ = Ff/R = wsin theta/wcos theta

µ = sin theta/cos theta

µ = tan(theta)

0.3 = tan (theta)

theta = arctan0.3

theta = 16.7°

P = 10(9.81)cos16.7° - 10(9.81)sin16.7°

P = 98.1(cos16.7°-sin16.7°)

P = 98.1(0.67)

P = 65.73N

The minimum force P required to cause impending motion is 65.73N

5 0
3 years ago
Other questions:
  • When do you produce more pressure on the ground...standing or laying down?
    6·1 answer
  • 5. A car accelerates from rest down a highway at 6 m/s2 for 5 seconds. What distance did the car travel during acceleration?
    12·1 answer
  • Which statement best explains the relationship between current, voltage, and resistance?
    15·1 answer
  • Amount of work done by a rotating object
    5·2 answers
  • During resistance exercise, muscles are __________. A. working against a force B. repeatedly contracted C. concerted in movement
    15·1 answer
  • 44.2 cm + 0.123 cm = cm
    6·2 answers
  • The distance from the Earth to the Sun is 92 868 000 miles.
    14·1 answer
  • A device that converts electrical energy into kinetic energy to turn an axle?
    13·1 answer
  • A given wave has a wavelength of 5.0 m and a frequency of 2.0 Hz. How fast
    6·1 answer
  • If a load of snow contains 3 tons it will weigh how many pounds
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!