Answer:
U = -3978.8 J
Explanation:
The work of the gravitational force U just depends of the heigth and is calculated as:
U = -mgh
Where m is the mass, g is the gravitational acceleration and h the alture.
for calculate the alture we will use the following equation:
h = L-Lcos(θ)
Where L is the large of the rope and θ is the angle.
Replacing data:
h = 12.2-12.2cos(58.4)
h = 5.8 m
Finally U is equal to:
U = -70(9.8)(5.8)
U = -3,978.8 J
Answer:
Required energy Q = 231 J
Explanation:
Given:
Specific heat of copper C = 0.385 J/g°C
Mass m = 20 g
ΔT = (50 - 20)°C = 30 °C
Find:
Required energy
Computation:
Q = mCΔT
Q = 20(0.385)(30)
Required energy Q = 231 J
Explanation:
Can be safer and cheaper than the real world. Able to test a product or system works before building it. Can use it to find unexpected problems. Can speed things up or slow them down to see changes over long or short periods of time.
.
.
.
.
At the point of maximum displacement (a), the elastic potential energy of the spring is maximum:

while the kinetic energy is zero, because at the maximum displacement the mass is stationary, so its velocity is zero:

And the total energy of the system is

Viceversa, when the mass reaches the equilibrium position, the elastic potential energy is zero because the displacement x is zero:

while the mass is moving at speed v, and therefore the kinetic energy is

And the total energy is

For the law of conservation of energy, the total energy must be conserved, therefore

. So we can write

that we can solve to find an expression for v:
Answer:
Force = Mass x Acceleration
Explanation: