Answer:
A) and B) are correct.
Explanation:
If the object is at rest, it means that no net force is exerted on it.
As the object experiences a downward gravitational force from Earth, in order to be at rest, it must experience an upward force with the same magnitude as the gravitational force on the object.
This force is supplied by the normal force, which can adopt any value in order to meet the condition imposed by Newton´s 2nd Law, and is always perpendicular to the surface on which the object is placed (in this case, the ground).
At a molecular level, this normal force is supplied by the bonded molecules of the ground that behave like small springs being compressed by the molecules of the object, exerting an upward restoring force upward on them.
So, the statements A) and B) are true.
Answer:
if you stretch a spring with k = 2, with a force of 4N, the extension will be 2m. the work done by us here is 4x2=8J. in other words, the energy transferred to the spring is 8J. but, the stored energy in the spring equals 1/2x2x2^2=4J (which is half of the work done by us in stretching it).
It's downward vector from the centre of apple in the direction to the centre of the Earth.
Answer & Explanation:
Scientists call them all electromagnetic radiation. The waves of energy are called electromagnetic (EM) because they have oscillating electric and magnetic fields. Scientists classify them by their frequency or wavelength, going from high to low frequency (short to long wavelength).
With constant angular acceleration
, the disk achieves an angular velocity
at time
according to

and angular displacement
according to

a. So after 1.00 s, having rotated 21.0 rad, it must have undergone an acceleration of

b. Under constant acceleration, the average angular velocity is equivalent to

where
and
are the final and initial angular velocities, respectively. Then

c. After 1.00 s, the disk has instantaneous angular velocity

d. During the next 1.00 s, the disk will start moving with the angular velocity
equal to the one found in part (c). Ignoring the 21.0 rad it had rotated in the first 1.00 s interval, the disk will rotate by angle
according to

which would be equal to
