Answer:
a) i₈ = 0.5 i₄, b) i₁₀ = 0.3 i₃, i₁₀ = 0.8 i₈
Explanation:
For this exercise we use ohm's law
V = i R
i = V / R
we assume that the applied voltage is the same in all cases
let's find the current for each resistance
R = 4 Ω
i₄ = V / 4
R = 8 Ω
i₈ = V / 8
we look for the relationship between these two currents
i₈ /i₄ = 4/8 = ½
i₈ = 0.5 i₄
R = 3 Ω
i₃ = V3
R = 10 Ω
i₁₀ = V / 10
we look for relationships
i₁₀ / 1₃ = 3/10
i₁₀ = 0.3 i₃
i₁₀ / 1₈ = 8/10
i₁₀ = 0.8 i₈
Answer: They behave the same because, according to the principle of equivalence, the laws of physics work the same in all frames of reference.
Explanation:
According to the equivalence principle postulated by Einstein's Theory of General Relativity, acceleration in space and gravity on Earth have the same effects on objects.
To understand it better, regarding to the equivalence principle, Einstein formulated the following:
A gravitational force and an acceleration in the opposite direction are equivalent, both have indistinguishable effects. Because the laws of physics must be accomplished in all frames of reference.
Hence, according to general relativity, gravitational force and acceleration in the opposite direction (an object in free fall, for example) have the same effect. This makes sense if we deal with gravity not as a mysterious atractive force but as a geometric effect of matter on spacetime that causes its deformation.
By ideal gas theory, cylinder b has the higher temperature.
We need to know about the ideal gas theory to solve this problem. The ideal gas can be represented by
P . V = n . R . T
where P is the pressure, V is volume, n is the number of molecules, R is the ideal gas constant and T is temperature.
From the question above, we know that
Pa = Pb = P
na = 3nb
Find the temperature of the cylinder a
P . V = n . R . Ta
Ta = P . V /( na . R )
Substitute na
Ta = P . V /( (3nb) . R )
Ta = (1/3) x (P . V /( (nb . R ))
Find the temperature of the cylinder b
P . V = n . R . Tb
Tb = P . V /( nb . R )
The cylinder a temperature is 3 times smaller than the temperature in cylinder b.
Find more on ideal gas at: brainly.com/question/25290815
#SPJ4
Answer:
Angular velocity, 
Explanation:
It is given that,
Maximum emf generated in the coil, 
Diameter of the coil, d = 40 cm
Radius of the coil, r = 20 cm = 0.2 m
Number of turns in the coil, N = 500
Magnetic field in the coil, 
The angle between the area vector and the magnet field vector varies from 0 to 2 π radians. The formula for the maximum emf generated in the coil is given by :




So, the angular velocity of the circular coil is 35.36 rad/s. Hence, this is the required solution.