<u>Answer</u>
To know where it starts we look where the zero mark of the vernier scale starts. The make just before reaching where the zero mark is marks the value to use<em>. </em>
<u>Explanation</u>
A vernier caliper is an instrument that is used to measure the diameter of small circular objects such as diameter of a wires, thickness of an iron sheet.
The objects to be measured is place between the jaws of the calipers.
The vernier scale has two scales, the vernier scale and the main scale which is the very top scale.<em> To know where it starts we look where the zero mark of the vernier scale starts. The make just before reaching where the zero mark is marks the value to use. </em>
Answer:
<em>2 m/s</em>
<em></em>
Explanation:
The electromagnetic flow-metre work on the principle of electromagnetic induction. The induced voltage is given as

where
is the induced voltage = 2.88 mV = 2.88 x 10^-3 V
is the distance between the electrodes in this field which is equivalent to the diameter of the tube = 1.2 cm = 1.2 x 10^-2 m
is the velocity of the fluid through the field = ?
is the magnetic field = 0.120 T
substituting, we have
2.88 x 10^-3 = 0.120 x 1.2 x 10^-2 x 
2.88 x 10^-3 = 1.44 x 10^-3 x 
= 2.88/1.44 = <em>2 m/s</em>
Answer:
C) True. At maximum displacement, its instantaneous velocity is zero.
Explanation:
The simple harmonic movement is given by
x = A cos wt
Speed
v = - A w sin wt
At the point of maximum displacement x = A
A = A cos wt
cos wt = 1
wt = 0
We replace the speed
v = -Aw sin 0 = A w
Speed is maximum
Let's review the claims
A) False. Speed is zero
B) False. It can be determined
C) True. Agree with our result
D) False. When one is maximum the other is minimum
Answer:
r₂ = 0.316 m
Explanation:
The sound level is expressed in decibels, therefore let's find the intensity for the new location
β = 10 log
let's write this expression for our case
β₁ = 10 log \frac{I_1}{I_o}
β₂ = 10 log \frac{I_2}{I_o}
β₂ -β₁ = 10 (
)
β₂ - β₁ = 10
log \frac{I_2}{I_1} =
= 3
= 10³
I₂ = 10³ I₁
having the relationship between the intensities, we can use the definition of intensity which is the power per unit area
I = P / A
P = I A
the area is of a sphere
A = 4π r²
the power of the sound does not change, so we can write it for the two points
P = I₁ A₁ = I₂ A₂
I₁ r₁² = I₂ r₂²
we substitute the ratio of intensities
I₁ r₁² = (10³ I₁ ) r₂²
r₁² = 10³ r₂²
r₂ = r₁ / √10³
we calculate
r₂ =
r₂ = 0.316 m
The observable universe<span> is a spherical region of the </span>Universe, <span>comprising all matter that can be observed from Earth at the present time, because light and other signals from these objects have had time to reach Earth since the beginning of the cosmological expansion.
</span>