Answer:
3.91 moles of Neon
Explanation:
According to Avogadro's Law, same volume of any gas at standard temperature (273.15 K or O °C) and pressure (1 atm) will occupy same volume. And one mole of any Ideal gas occupies 22.4 dm³ (1 dm³ = 1 L).
Data Given:
n = moles = <u>???</u>
V = Volume = 87.6 L
Solution:
As 22.4 L volume is occupied by one mole of gas then the 16.8 L of this gas will contain....
= ( 1 mole × 87.6 L) ÷ 22.4 L
= 3.91 moles
<h3>2nd Method:</h3>
Assuming that the gas is acting ideally, hence, applying ideal gas equation.
P V = n R T ∴ R = 0.08205 L⋅atm⋅K⁻¹⋅mol⁻¹
Solving for n,
n = P V / R T
Putting values,
n = (1 atm × 87.6 L)/(0.08205 L⋅atm⋅K⁻¹⋅mol⁻¹ × 273.15K)
n = 3.91 moles
Result:
87.6 L of Neon gas will contain 3.91 moles at standard temperature and pressure.
Answer:
2
Explanation:
to separate objects or ideas into group based on ways they are alike
Answer:
A They are incorporated into molecules of sugar.
Explanation:
Photosynthesis is the metabolic process whereby sugar molecules are synthesized by plants in the presence of sunlight (light energy). For this process to occur, carbon dioxide (CO2) and water (H2O) are needed as reactants from external sources. Hence, the photosynthetic equation is as follows:
6CO2 + 6H2O → C6H12O6 + 6O2
According to this question, the carbon atoms in carbon dioxide are incorporated into sugar molecule (glucose). It takes 6 carbon atoms to produce one glucose molecule (C6H12O6). This process involves series of reaction in the light-independent stage of photosynthesis to occur.
Śhüt ûp and go pay attention in your class