Answer:
<h2>
Therefore the length of a side of a cube is ![\sqrt[3]{64}\ or\ 4](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B64%7D%5C%20or%5C%204)
</h2>
Step-by-step explanation:
The volume of a cube is expressed as L³ where L is the length of each side of the cube.
Given volume of a cube = 64in³
On substituting;
64 = L³
Taking the cube root of both sides to determine L we have;
![\sqrt[3]{64} = (\sqrt[3]{L})^{3}\\\sqrt[3]{64} = L\\L=4](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B64%7D%20%3D%20%28%5Csqrt%5B3%5D%7BL%7D%29%5E%7B3%7D%5C%5C%5Csqrt%5B3%5D%7B64%7D%20%3D%20L%5C%5CL%3D4)
Therefore the length of a side of a cube is ![\sqrt[3]{64}\ or\ 4](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B64%7D%5C%20or%5C%204)
Answers:1)Tthe first answer is that as x increases the value of p(x) approaches a number that is greater than q (x).
2) the y-intercept of the function p is greater than the y-intercept of the function q.
Explanation:1) Value of the functions as x increases.Function p:

As x increases, the value of the function is the limit when x → ∞.
Since [2/5] is less than 1,
the limit of [2/5]ˣ when x → ∞ is 0, and the limit of p(x) is 0 - 3 = -3.While in the graph you see that the function
q has a horizontal asymptote that shows that the
limit of q (x) when x → ∞ is - 4.Then, the first answer is that
as x increases the value of p(x) approaches a number that is greater than q (x).2) y - intercepts.i) To determine the y-intercept of the function p(x), just replace x = 0 in the equation:
p(x) = [ 2 / 5]⁰ - 3 = 1 - 3 = - 2ii) The y-intercept of q(x) is read in the
graph. It is - 3.
Then the answer is that
the y-intercept of the function p is greater than the y-intercept of the function q.
The system of equations becomes:
s + u = 28 This represent the number of candles sold
16s + 10u = 400 This represents the value of the candles sold
Why would we need 3.14 as pi? The answer is 45/10 = 4.5 inches.
Answer:
I have made it in above pic