Answer:
Leon
Explanation: all take up space and will have a mass to it.
The chemical formula : X₃Y₂
<h3>Further explanation </h3>
The noble gas element is a stable class of elements. The noble gas element is monatomic. Stability of noble gases is caused by an electron configuration that has a stable configuration of 8 (has 8 valence electrons) except He with a duplet configuration (has 2 valence electrons)
Other elements that do not yet have electron configurations such as noble gases will try to achieve their stability by forming bonds between elements.
This is generally called the octet rule
X has 2 valence electrons.to achieve stability, element X will release 2 electrons to form X²⁺
Y has 5 valence electrons, to achieve stability, the element Y will attract/ add electrons to form Y³⁻
The two compounds will form a compound with the charges crossed : X₃Y₂
A polypeptide is a peptide composed of two amino-acid and a peptide bond is a chemical bond formed between two molecules, when the carboxyl group of one molecule reacts with the amino group of the other molecule, releasing a molecule of water.
Cystine is dimer of Cystein amino acid formed by oxidation reaction. Its main function is to provide mechanical strength to proteins and allow them to retain their 3-D structures and also serves as a substrate for the cystine-glutamate antiporter.
As shown in figure cystine has two amino groups (highlighted blue) and two carboxylic groups (highlighted green). In its original structure cystine is neutral in nature as it has equal number of basic (NH₂) and acidic (COOH) moieties along with two chiral centers (asymmetric carbons) highlighted with red spots.
When one -NH₂ group is replaced by -COOH group the cystine is converted into an acidic compound with three COOH groups and a NH₂ group. Also, one asymmetric carbon will convert into a symmetrical carbon with a loss of one chiral carbon.
In second step, when another NH₂ is replaced by COOH, the acidic strength of resulting compound will increase along with conversion of last chiral carbon into symmetric carbon.
Therefore, the final structure will be acidic in nature with zero chiral carbons as shown in figure attached below.