<span>The equation you used is KE=hv-hv0, where h=6.63*10^-34 (constant). You multiply h by 1.5*10^15. Multiply h by the threshold freq of cesium (from part A). Subtract the second answer from the first answer, and you get the kinetic energy. Hope this helps.</span>
It’s can go down to 50 degrees soo that can do
Jdjdjxjjznbxyhzkaishsbzn
Kzksjdjjdidiididjdjdjj
Sksk
Answer:
PV=nRT where P=pressure in atm, V=volume is liters, n=numbber of moles, R=gas constant, 0.08206 L-atm/mole KL, and T=temperature in K (273 + C). So (5.67atm)(99.39L)=n(0.08206 L-atm/mol.K)(328.94K), solve for n, the number of moles, n=20.9 moles.
Explanation:
Explanation:
Mg(s) + Cr(C2H3O2)3 (aq)
Overall, balanced molecular equation
Mg(s) + Cr(C2H3O2)3(aq) --> Mg(C2H3O2)3(aq) + Cr(s)
To identify if an element has been reduced or oxidized, the oxidation number is observed in both the reactant and product phase.
An increase in oxidation number denotes that the element has been oxidized.
A decrease in oxidation number denotes that the element has been reduced.
Oxidation number of Mg:
Reactant - 0
Product - +3
Oxidation number of Cr:
Reactant - +3
Product - 0
Note: C2H3O2 is actually acetate ion; CH3COO- The oxidatioon number of C, H and O do not change.
Oxidized : Mg
Reduced : Cr