1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Yuki888 [10]
4 years ago
7

A pharmacist put 4.536 ounces of vitamin pills into bottles. She put 0.042 ounce of vitamin pills into each bottle. How many bot

tles did the pharmacist use for these vitamin pills?
Mathematics
1 answer:
Romashka [77]4 years ago
3 0
THE ANSWER IS 5 since the decimals are out of place
You might be interested in
9/6 × 4/5 <br> 1 <br>) 36/11<br>) 6/5<br>) 32/30<br>) 13/15​
erik [133]

Answer:

6/5

Step-by-step explanation:

9×4=36

6×5=30

36/30÷2

18/15÷3

6/5

6 0
2 years ago
Simplify 2(3×8-15÷16)<br>​
KengaRu [80]

Answer:

46.125 or 46 1/8

Step-by-step explanation:

2(3×8-15÷16)

=2(24-15÷16)

= 48 - 30/16

= (768 - 30)/16

= 738/16

= 46.125 or 46 1/8

8 0
4 years ago
What is the slope of (4,8) (2,4)
weqwewe [10]
2
\frac{4 - 8}{2 - 4}  =  \frac{ - 4}{ - 2}  = 2
6 0
4 years ago
\lim _{x\to 0}\left(\frac{2x\ln \left(1+3x\right)+\sin \left(x\right)\tan \left(3x\right)-2x^3}{1-\cos \left(3x\right)}\right)
Vinvika [58]

\displaystyle \lim_{x\to 0}\left(\frac{2x\ln \left(1+3x\right)+\sin \left(x\right)\tan \left(3x\right)-2x^3}{1-\cos \left(3x\right)}\right)

Both the numerator and denominator approach 0, so this is a candidate for applying L'Hopital's rule. Doing so gives

\displaystyle \lim_{x\to 0}\left(2\ln(1+3x)+\dfrac{6x}{1+3x}+\cos(x)\tan(3x)+3\sin(x)\sec^2(x)-6x^2}{3\sin(3x)}\right)

This again gives an indeterminate form 0/0, but no need to use L'Hopital's rule again just yet. Split up the limit as

\displaystyle \lim_{x\to0}\frac{2\ln(1+3x)}{3\sin(3x)} + \lim_{x\to0}\frac{6x}{3(1+3x)\sin(3x)} \\\\ + \lim_{x\to0}\frac{\cos(x)\tan(3x)}{3\sin(3x)} + \lim_{x\to0}\frac{3\sin(x)\sec^2(x)}{3\sin(3x)} \\\\ - \lim_{x\to0}\frac{6x^2}{3\sin(3x)}

Now recall two well-known limits:

\displaystyle \lim_{x\to0}\frac{\sin(ax)}{ax}=1\text{ if }a\neq0 \\\\ \lim_{x\to0}\frac{\ln(1+ax)}{ax}=1\text{ if }a\neq0

Compute each remaining limit:

\displaystyle \lim_{x\to0}\frac{2\ln(1+3x)}{3\sin(3x)} = \frac23 \times \lim_{x\to0}\frac{\ln(1+3x)}{3x} \times \lim_{x\to0}\frac{3x}{\sin(3x)} = \frac23

\displaystyle \lim_{x\to0}\frac{6x}{3(1+3x)\sin(3x)} = \frac23 \times \lim_{x\to0}\frac{3x}{\sin(3x)} \times \lim_{x\to0}\frac{1}{1+3x} = \frac23

\displaystyle \lim_{x\to0}\frac{\cos(x)\tan(3x)}{3\sin(3x)} = \frac13 \times \lim_{x\to0}\frac{\cos(x)}{\cos(3x)} = \frac13

\displaystyle \lim_{x\to0}\frac{3\sin(x)\sec^2(x)}{3\sin(3x)} = \frac13 \times \lim_{x\to0}\frac{\sin(x)}x \times \lim_{x\to0}\frac{3x}{\sin(3x)} \times \lim_{x\to0}\sec^2(x) = \frac13

\displaystyle \lim_{x\to0}\frac{6x^2}{3\sin(3x)} = \frac23 \times \lim_{x\to0}x \times \lim_{x\to0}\frac{3x}{\sin(3x)} \times \lim_{x\to0}x = 0

So, the original limit has a value of

2/3 + 2/3 + 1/3 + 1/3 - 0 = 2

6 0
3 years ago
Randy ate 29 crackers in 4 minutes. At what RATE did Randy eat?
lisabon 2012 [21]

Answer:

7 1/4 cookies per minute

Step-by-step explanation:

29/4 = 7 1/4

6 0
3 years ago
Read 2 more answers
Other questions:
  • Use the Pythagorean theorem to find the lengths of the sides of the right triangle. Use a calculator when necessary. A right tri
    14·1 answer
  • Two of the steps in the derivation of the quadratic formula are shown below.
    10·2 answers
  • Aubrey is saving up to buy a new jacket. She already has $85 and can save an additional $7 per week using money from her after s
    10·2 answers
  • X+y= -9<br> x+2y= -25<br><br> According to the system of equations above, what is the value of y?
    10·1 answer
  • The table shows values represented by an exponential function what is the average rate of change for the function for the interv
    15·1 answer
  • 2x2 + 5x+3 I don't understand ​
    14·2 answers
  • Evaluate and simplify. Enter your answer as an integer or as a proper fraction or mixed number in simplest form. (− 3/4 / 4/5)=
    6·2 answers
  • HeLp PlzZzZ????? WiLL GiVe BrAiNlieSt<br> https://brainly.com/question/20643008
    8·2 answers
  • PLEASE ANSWER AND SHOW WORK :))))) <br><br> Find the measure of angle TOS in the figure below.
    13·2 answers
  • Please help im new here! a library would like to see how many of its patrons would be interested in regularly checking out books
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!