No. A function maps one input to exactly one output. The given relation maps 1 to both 1 and -1, as indicated by the pairs (1, 1) and (1, -1).
Answer:
Morgan, its a straight line and it goes through the origin
Step-by-step explanation:
Answer:
The translated function can be written as:
y = f(x) + 4
Answer:
L.H.S.
= (cos5a.sin2a-cos4a.sin3a)/ (sin5a.sin2a-cos4a.cos3a)
Multiply numerator and denominator by 2.
= 2(cos5a.sin2a - cos4a.sin3a) / 2(sin5a.sin2a - cos4a.cos3a)
= (2cos5a.sin2a - 2cos4a.sin3a)/
(2sin5a.sin2a - 2cos4a.cos3a) = [sin(5a+2a)-sin(5a-2a)-sin(4a+3a)
+sin(4a-3a)]/[cos(5a-2a)-cos(5a+2a)-sin(4a-3a) +cos(4a+3a)]
= (sina - sin3a)/(cso3a-cosa)
= (-2cos2a.sina)/(-2sin2a.sina)
= cos2a/sin2a
= cot2a
= R.H.S.