Answer:
<h2>
<em><u>16h2</u></em><em><u> </u></em><em><u>-</u></em><em><u> </u></em><em><u>4h</u></em><em><u> </u></em><em><u>-</u></em><em><u> </u></em><em><u>42</u></em></h2>
Step-by-step explanation:
(4h + 6)(4h − 7)
= 4h(4h - 7) + 6(4h-7)
= 16h2 - 28h + 24h - 42
= <em><u>16h2 - 4h - 42 (Ans)</u></em>
Y = 1, x = 1 hope this helps!
Answer: f(n+1) = 3 f(n)
Step-by-step explanation:
- A recursive formula is used to determine each term of a sequence using preceding term or terms.
Given sequence : 2.5, 7.5, 22.5, 67.5, 202.5,...
Here,

Common ratio = 3
Let f(n) be a term in this sequence then the next term will be f(n+1) = 3 f(n), where n is a natural number .
Required recursive formula : f(n+1) = 3 f(n)
Answer:
(1,-44), (2,-48),(3,-52).......
Step-by-step explanation:
4(1)+y=-40
4+y=-40
y=-40-4
y=-44
(1,-44)
.
.
.
Answer:
numerator degree of freedom = 3
Denominator degree of freedom = 47
Step-by-step explanation:
The numerator degree of freedom is given by :
p - 1 ; where p = number of predictors ;
p = number of independent variables + 1
Number of independent variables = 3
p = 3 + 1 = 4
Numerator degree of freedom = p - 1 = 4 - 1 = 3
The denominator degree of freedom = n - p ; where n = number of observations
Number of observations, n = 51
Denominator degree of freedom = n - p = 51 - 4 = 47