Answer:
3×
Step-by-step explanation:
0.00000003
Move the decimal so there is one non-zero digit to the left of the decimal point. The number of decimal places you move will be the exponent on the
10
. If the decimal is being moved to the right, the exponent will be negative. If the decimal is being moved to the left, the exponent will be positive.
Answer:
6
Step-by-step explanation:
I hoped it helped!!!
You can just divide both 24 by 4 and 4 by 4 to make it 1.
The answers that apply are Triangles, Squares, and Rectangles. Because when you look at the base of the pyramid more closely, they are maded of 3 different kinds of shapes.
Answer:
See below for proof.
Step-by-step explanation:
<u>Given</u>:

<u>First derivative</u>

<u />
<u />
<u />

<u>Second derivative</u>
<u />







<u>Proof</u>



![= \left(x+\sqrt{1+x^2}\right)^m\left[m^2-\dfrac{mx}{\sqrt{1+x^2}}+\dfrac{mx}{\sqrt{1+x^2}}-m^2\right]](https://tex.z-dn.net/?f=%3D%20%5Cleft%28x%2B%5Csqrt%7B1%2Bx%5E2%7D%5Cright%29%5Em%5Cleft%5Bm%5E2-%5Cdfrac%7Bmx%7D%7B%5Csqrt%7B1%2Bx%5E2%7D%7D%2B%5Cdfrac%7Bmx%7D%7B%5Csqrt%7B1%2Bx%5E2%7D%7D-m%5E2%5Cright%5D)
![= \left(x+\sqrt{1+x^2}\right)^m\left[0]](https://tex.z-dn.net/?f=%3D%20%5Cleft%28x%2B%5Csqrt%7B1%2Bx%5E2%7D%5Cright%29%5Em%5Cleft%5B0%5D)
