1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tensa zangetsu [6.8K]
2 years ago
14

If x is 5, then 6= what

Mathematics
1 answer:
irina [24]2 years ago
8 0
If x is 5 then 6 = y...... I hope this helps
You might be interested in
0.00000003 in scientific notation
tester [92]

Answer:

3×10x^{-8}

Step-by-step explanation:

0.00000003

Move the decimal so there is one non-zero digit to the left of the decimal point. The number of decimal places you move will be the exponent on the  

10 . If the decimal is being moved to the right, the exponent will be negative. If the decimal is being moved to the left, the exponent will be positive.

6 0
2 years ago
If I wash 24 dogs and used 4 bottles of shampoo, How many dogs can I wash with only 1 bottle of shampoo?
____ [38]

Answer:

6

Step-by-step explanation:

I hoped it helped!!!

You can just divide both 24 by 4 and 4 by 4 to make it 1.

6 0
2 years ago
Read 2 more answers
Question 2 Pyramids can be made of (check ALL that apply): circles squares triangles cylinders rectangles
PilotLPTM [1.2K]
The answers that apply are Triangles, Squares, and Rectangles. Because when you look at the base of the pyramid more closely, they are maded of 3 different kinds of shapes.
5 0
3 years ago
If <img src="https://tex.z-dn.net/?f=%5Cmathrm%20%7By%20%3D%20%28x%20%2B%20%5Csqrt%7B1%2Bx%5E%7B2%7D%7D%29%5E%7Bm%7D%7D" id="Tex
Harman [31]

Answer:

See below for proof.

Step-by-step explanation:

<u>Given</u>:

y=\left(x+\sqrt{1+x^2}\right)^m

<u>First derivative</u>

\boxed{\begin{minipage}{5.4 cm}\underline{Chain Rule for Differentiation}\\\\If  $f(g(x))$ then:\\\\$\dfrac{\text{d}y}{\text{d}x}=f'(g(x))\:g'(x)$\\\end{minipage}}

<u />

<u />\boxed{\begin{minipage}{5 cm}\underline{Differentiating $x^n$}\\\\If  $y=x^n$, then $\dfrac{\text{d}y}{\text{d}x}=xn^{n-1}$\\\end{minipage}}

<u />

\begin{aligned} y_1=\dfrac{\text{d}y}{\text{d}x} & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{2x}{2\sqrt{1+x^2}} \right)\\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{x}{\sqrt{1+x^2}} \right) \\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(\dfrac{x+\sqrt{1+x^2}}{\sqrt{1+x^2}} \right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^{m-1}  \cdot \left(x+\sqrt{1+x^2}\right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m\end{aligned}

<u>Second derivative</u>

<u />

\boxed{\begin{minipage}{5.5 cm}\underline{Product Rule for Differentiation}\\\\If  $y=uv$  then:\\\\$\dfrac{\text{d}y}{\text{d}x}=u\dfrac{\text{d}v}{\text{d}x}+v\dfrac{\text{d}u}{\text{d}x}$\\\end{minipage}}

\textsf{Let }u=\dfrac{m}{\sqrt{1+x^2}}

\implies \dfrac{\text{d}u}{\text{d}x}=-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}

\textsf{Let }v=\left(x+\sqrt{1+x^2}\right)^m

\implies \dfrac{\text{d}v}{\text{d}x}=\dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^m

\begin{aligned}y_2=\dfrac{\text{d}^2y}{\text{d}x^2}&=\dfrac{m}{\sqrt{1+x^2}}\cdot\dfrac{m}{\sqrt{1+x^2}}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}\\\\&=\dfrac{m^2}{1+x^2}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\\\\ &=\left(x+\sqrt{1+x^2}\right)^m\left(\dfrac{m^2}{1+x^2}-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\right)\\\\\end{aligned}

              = \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\right)\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)

<u>Proof</u>

  (x^2+1)y_2+xy_1-m^2y

= (x^2+1) \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left[m^2-\dfrac{mx}{\sqrt{1+x^2}}+\dfrac{mx}{\sqrt{1+x^2}}-m^2\right]

= \left(x+\sqrt{1+x^2}\right)^m\left[0]

= 0

8 0
1 year ago
Elena works at the gummy candy factory. She packs 100 bags of gummy candy in 4
amid [387]
7,500 bags of gummy candy
3 0
3 years ago
Read 2 more answers
Other questions:
  • The edge of each cube used to build this rectangular prism is 13
    15·2 answers
  • Find the value of ab when a=4/7 and b= 4/11
    7·2 answers
  • This graph shows a relationship between the height of a giraffe and its weight.
    14·1 answer
  • One third of your class of 18 students likes vanilla frozen yogurt. How many students in
    12·2 answers
  • Solve each inequality, and then drag the correct solution graph to the inequality.
    10·2 answers
  • A right triangle, DEF, is shown below.<br><br> What is sin FDE?
    13·1 answer
  • Which is greater, 125 or V30?
    12·1 answer
  • Zack’s Italian Pizza Bar baked 2,000 pizzas in the first year that they were open. In the second year, they baked 3,000 pizzas a
    10·1 answer
  • The military academy is placing cadets in rows for the parade. All rows must have the same number of cadets. If A company has 64
    8·2 answers
  • Please i need this to be done. The end of the marking period is Friday and i have until tomorrow to do some of this can anyone h
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!