Answer:
The velocity of the cart at the bottom of the ramp is 1.81m/s, and the acceleration would be 3.30m/s^2.
Explanation:
Assuming the initial velocity to be zero, we can obtain the velocity at the bottom of the ramp using the kinematics equations:

Dividing the second equation by the first one, we obtain:

And, since
, then:

It means that the velocity at the bottom of the ramp is 1.81m/s.
We could use this data, plus any of the two initial equations, to determine the acceleration:

So the acceleration is 3.30m/s^2.
Answer:

Explanation:
The total energy of the satellite when it is still in orbit is given by the formula

where
G is the gravitational constant
m = 525 kg is the mass of the satellite
is the Earth's mass
r is the distance of the satellite from the Earth's center, so it is the sum of the Earth's radius and the altitude of the satellite:

So the initial total energy is

When the satellite hits the ground, it is now on Earth's surface, so

so its gravitational potential energy is

And since it hits the ground with speed

it also has kinetic energy:

So the total energy when the satellite hits the ground is

So the energy transformed into internal energy due to air friction is the difference between the total initial energy and the total final energy of the satellite:

"Fluid intelligence involves being able to think and reason abstractly and solve problems. This ability is considered independent of learning, experience, and education. Examples of the use of fluid intelligence include solving puzzles and coming up with problem-solving strategies."
- Verywell Mind
The speed of tsunami is a.0.32 km.
Steps involved :
The equation s = 356d models the maximum speed that a tsunami can move at. It reads as follows: s = 200 km/h d =?
Let's now change s to s in the equation to determine d: s = 356√d 200 = 356√d √d = 200 ÷ 356 √d = 0.562 Let's square the equation now by squaring both sides: (√d)² = (0.562) ² d = (0.562)² = 0.316 ≈ 0.32
As a result, 0.32 km is roughly the depth (d) of water for a tsunami moving at 200 km/h.
To learn more about tsunami refer : brainly.com/question/11687903
#SPJ4
Answer:
i think D I hope this helps!!!!