1 inch = 2.54 centimeters
All we need to do is multiply.
68.5 * 2.54 = 173.99cm
Best of Luck!
<span>Lets call F the friction force which will act horizontally backwards.
As you are travelling at a constant velosity horizontally there is no overall resultant force in this direction.
ie. the force you pull with will be equal to the friction force resisting you. (you will initially have to have pulled with a greater force than the friction to get the suitcase moving)
the value of your force pulling is 60 cos26.9 (horizontally) - you should have learnt about resolving forces.
this must be equal to F
so
F=60cos26.9
F=53.5N
hope this helps you
please mark this as brainliest answer</span>
<span> Let’s determine the initial momentum of each car.
#1 = 998 * 20 = 19,960
#2 = 1200 * 17 = 20,400
This is this is total momentum in the x direction before the collision. B is the correct answer. Since momentum is conserved in both directions, this will be total momentum is the x direction after the collision. To prove that this is true, let’s determine the magnitude and direction of the total momentum after the collision.
Since the y axis and the x axis are perpendicular to each other, use the following equation to determine the magnitude of their final momentum.
Final = √(x^2 + y^2) = √(20,400^2 + 19,960^2) = √814,561,600
This is approximately 28,541. To determine the x component, we need to determine the angle of the final momentum. Use the following equation.
Tan θ = y/x = 19,960/20,400 = 499/510
θ = tan^-1 (499/510)
The angle is approximately 43.85˚ counter clockwise from the negative x axis. To determine the x component, multiply the final momentum by the cosine of the angle.
x = √814,561,600 * cos (tan^-1 (499/510) = 20,400</span>
, density is how compact an object is. Put another way, density is the mass of an object divided by its volume.